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We use raw observed abundance in open communities to calculate the strength of 3 

negative frequency dependence (NFD) for all persistent species. The wide availability of 4 

abundance data makes the generality of our conclusions possible, but it also creates uncertainty 5 

in our estimates. Density dependence is typically overestimated in the presence of observation 6 

uncertainty (1–3). The same bias could also influence our estimates of frequency dependence. 7 

Another source of measurement error is immigration and emigration. Assuming a species 8 

experiences net immigration in a low abundance year (relative to surrounding locations), and net 9 

emigration in a high abundance year, the estimate of density dependence will be inflated for that 10 

species. This tendency to detect density dependence in abundance data even when none exists 11 

means that we cannot obtain reliable estimates of NFD without correcting for this bias somehow. 12 

We are not, however, interested in the precise estimates of NFD for each species in each 13 

community so much as we are interested in the pattern created when rare species have 14 

disproportionately strong NFD relative to their common counterparts. Focusing on the relative 15 

strength of NFD removes the need for unbiased estimates of population model parameters for 16 

every species in the community (1). There are, however, further sources of bias that may still 17 

contaminate our estimate of the overall pattern of asymmetric NFD. For example, the rare 18 

species in our abundance estimates might be prone to greater measurement error than the 19 

common species, leading to the asymmetric NFD pattern. Measurement error is not the only, or 20 

even most likely, potential source of bias when estimating NFD from abundance data. There are 21 

also potential artifacts related to the relationship between the slope and x-intercept, as well as 22 

possible direct or indirect effects of the number of species. We use randomizations of the raw 23 

abundance data to control for all these potential sources of bias simultaneously.  24 

To demonstrate the effectiveness of our methods for controlling for different sources of 25 

bias, we simulated species abundances with known NFD and used our methodology to quantify 26 

the relationship between equilibrium frequency and NFD. In each simulation, population growth 27 

depended on negative frequency dependence and demographic stochasticity as follows: 28 

 29 

ns,t+1= exp(FDs * Ns,t/Ct + IGRs) * Ns,t 30 

Ns,t+1 ~ Pois(ns,t+1) 31 

Where ns,t+1 is the expected abundance of species s in time t+1 and Ct  is the total 32 

community abundance in time t. IGR represents the intrinsic growth rate and FD represents the 33 

frequency dependence experienced by each species s. Ns,t+1 is the true abundance of species s in 34 

time t+1, after incorporating demographic stochasticity with a Poisson distribution.  35 

We then incorporated measurement error by drawing observed abundances, X, from a 36 

negative binomial distribution with mean Ns,t+1 and dispersion parameter k: 37 
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Xs,t+1 ~ NB(Ns,t+1 , k) 38 

All simulations were initialized with a total community abundance of 1000 individuals. 39 

We used the values in Table S2 to represent multiple possible scenarios for the empirical 40 

relationship between NFD and equilibrium frequency (Figure S1). Scenario 1 represents 41 

communities with no relationship between equilibrium frequency and NFD. Scenario 2 42 

represents communities with a weak relationship between equilibrium frequency and NFD. Note 43 

that in this community, rare species experience smaller maximal growth rates than common 44 

species. Scenario 3 represents a moderate relationship between equilibrium frequency and NFD, 45 

and one in which all species are experiencing similar maximal growth rates (1, in this case). 46 

Scenario 4 represents communities with a strong relationship between equilibrium frequency and 47 

NFD. In these scenarios, rare species will often experience larger maximal growth rates than 48 

common species, in addition to steeper NFD. In each of these scenarios, the equilibrium 49 

frequencies f of the 10 species remain constant. Only the strength of NFD changes, and the 50 

relationship between equilibrium frequency and NFD as a result, but basic community structure 51 

is unaltered (Figure S2).  52 

We altered the relationship between the values of the dispersion parameter and the 53 

equilibrium frequency to demonstrate the robustness of our methodology to biases in sampling. 54 

We examined three different models for how sampling bias could influence our results (Figure 55 

S3). First we examined whether sampling noise affecting all species equally influenced our 56 

ability to detect the pattern of interest (Table S2, sampling model A, k=1). The remaining two 57 

sampling models also demonstrate the robustness of our methods to sampling noise that is based 58 

on species abundance. Setting the dispersion parameter k equal to 10*f simulates sampling in 59 

which uncertainty, in the form of clustering, is higher for rare species (Table S2, sampling model 60 

B, k=10*f). Setting the dispersion parameter k equal to 0.1/f simulates sampling in which 61 

uncertainty, in the form of clustering, is higher for more common species (Table S2, sampling 62 

model C, k=0.1/f). This final scenario is not based on a known potential bias, but is included to 63 

thoroughly demonstrate the robustness of the model.  64 

For the data generated from each of these simulations, we assessed whether our 65 

randomization technique (see Methods, main text) could distinguish between real patterns in the 66 

underlying community from patterns that may have been generated by various sources of bias. 67 

The simulation results demonstrate the ability of our bias control methods to detect and remove 68 

relationships between equilibrium frequency and NFD created entirely by artifacts (the 69 

uncertainty bias, mean/variance ratios resulting from sampling bias, etc.). The benefit of this 70 

general method relying on randomizations is its generality. It is not necessary to know what 71 

sources of bias may plague each community in our analysis. The randomizations detect any 72 

pattern in the data that may create the asymmetric NFD pattern, other than one related to 73 
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frequency dependence in the time series (Figures S4 – S7). Thus, we are able to treat all 74 

communities uniformly. 75 

The randomizations do not, however, account for uncertainty in the individual estimates 76 

of negative frequency dependence. By treating all communities uniformly, we do not incorporate 77 

time lags, cycles, or nonlinearities, among other possibilities, though in certain communities it 78 

would likely be appropriate. Though the randomization does account for some of the effects of 79 

emigration and immigration, there is one bias specifically we are unable to account for, because 80 

we are unable to differentiate in situ population growth from immigration. If rare species are 81 

more likely to be net population sinks than common species in the observed sample, this could 82 

create asymmetric NFD. It is extremely unlikely that this produces the pattern we see in every 83 

single community, but does mean that we cannot rule it out as a possibility for an individual 84 

community. As a result, we do not make conclusions based on any individual species, but the 85 

prevalence of asymmetric NFD over all communities. We leave improved estimates of these 86 

individual parameters to further research. 87 

The simulation results also support the assertion that our method is very conservative, 88 

and is not able to detect real negative equilibrium frequency-NFD relationships when the pattern 89 

is weak (Figures S5 – S6). Therefore, we are unable to distinguish between a pattern created 90 

entirely by bias, and one that is weak, but real. On the other hand, when our method does detect a 91 

significant association between equilibrium frequency and NFD, we can be confident that the 92 

relationship is not only present, but very strong. Again, we leave the detection of weakly 93 

asymmetric NFD in some of these specific communities to future, more targeted, research. 94 

 95 
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Table S2. Summary of the parameter values used in our simulations. All combinations of the NFD 105 
scenarios and sampling values were run. 106 
 107 
 108 

Sp
eci
es 

Equilibri
um 

frequen
cy (f) 

NFD 
Scenario 1 

NFD 
Scenario 2 

NFD 
Scenario 3 

NFD 
Scenario 4 

Sampling model 
(k values) 

IGR FD IGR FD 
IG
R 

FD IGR FD 
A: 

Constant 

B: 
10*

f 

C: 
0.1/f 

1 0.001 0.001 -1 0.032 
-

31.62 
1 -1000 31.62 

-

31622.78 
1 

0.0

1 
100 

2 0.01 0.01 -1 0.100 
-

10.00 
1 -100 10.00 -1000 1 0.1 10 

3 0.02 0.02 -1 0.141 -7.07 1 -50 7.07 -353.55 1 0.2 5 

4 0.04 0.04 -1 0.200 -5.00 1 -25 5.00 -125 1 0.4 2.5 

5 0.08 0.08 -1 0.283 -3.54 1 -12.5 3.54 -44.19 1 0.8 1.25 

6 0.09 0.09 -1 0.300 -3.33 1 -11.11 3.33 -37.04 1 0.9 1.1 

7 0.149 0.149 -1 0.386 -2.59 1 -6.71 2.59 -17.39 1 
1.4

9 
0.67 

8 0.16 0.16 -1 0.400 -2.50 1 -6.25 2.50 -15.63 1 1.6 0.63 

9 0.18 0.18 -1 0.424 -2.36 1 -5.56 2.36 -13.09 1 1.8 0.56 

10 0.27 0.27 -1 0.520 -1.92 1 -3.70 1.92 -7.13 1 2.7 0.37 

 109 
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Figure Legends 110 

Figure S1: The frequency-dependence relationships simulated in each community scenario. In each case, 111 

the species’ equilibrium frequencies are the same (see model above). Only the strength of NFD 112 

experienced by each species (steepness of the line) is changed in each scenario, to create differing 113 

strengths of the equilibrium frequency-NFD relationship (‘pattern’). 114 

 115 

Figure S2: The resulting actual species abundances in simulated community scenarios 1 (panel 1), 2 116 

(panel 2), 3 (panel 3), and 4 (panel 4). 117 

 118 

 119 
 120 
 121 
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Figure S3: The resulting observed species abundances in the nine simulated communities, after 122 
incorporating sampling noise. Each column of figures displays the data from one NFD scenario; scenario 123 
1 (panel 1), 2 (panel 2), 3 (panel 3), or 4 (panel 4). Each row of figures displays the data from one set of 124 
sampling bias values; Constant dispersion parameter (k=1, row A); dispersion parameter decreases with 125 
rarity (k=10*f); or dispersion parameter increases with rarity (k=0.1/f). 126 
 127 

 128 

 129 

 130 
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Figure S4: Results of simulation of Scenario 1, using the same methodology applied to the real 131 

community data. The first figure in each panel shows the calculated relative abundances and growth 132 

rates from the simulated data for 10 species (points). Lines represent the estimated relationship for 133 

each species. The second figure shows the relationship between equilibrium frequency and the strength 134 

of NFD in each simulated community (red lines are the fitted log-log relationship). The third figure shows 135 

histograms of the ‘Null’ pattern estimated from the shuffled data in 5000 randomizations. The vertical 136 

red line is the pattern estimated from the simulated data for comparison. This is how p values were 137 

calculated (for use in false discovery rate control). The dispersion parameter was constant (A, k=1), 138 

increased with rarity (B, k=10*f), or decreased with rarity (C, k=0.1/f). In this scenario with no 139 

relationship between equilibrium frequency and NFD, the randomization methods correctly detect no 140 

significant relationship. 141 
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Figure S5: Results of simulation of Scenario 2, using the same methodology applied to the real 148 

community data. The first figure in each panel shows the calculated relative abundances and growth 149 

rates from the simulated data for 10 species (points). Lines represent the estimated relationship for 150 

each species. The second figure shows the relationship between equilibrium frequency and the strength 151 

of NFD in each simulated community (red lines are the fitted log-log relationship). The third figure shows 152 

histograms of the ‘Null’ pattern estimated from the shuffled data in 5000 randomizations. The vertical 153 

red line is the pattern estimated from the simulated data for comparison. This is how p values were 154 

calculated (for use in false discovery rate control). The dispersion parameter was constant (A, k=1), 155 

increased with rarity (B, k=10*f), or decreased with rarity (C, k=0.1/f). In this scenario with a weak 156 

relationship between equilibrium frequency and NFD, the randomization methods cannot distinguish 157 

between an artificial relationship created by uncertainty in the observations and the real pattern. 158 
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Figure S6: Results of simulation of Scenario 3, using the same methodology applied to the real 165 

community data. The first figure in each panel shows the calculated relative abundances and growth 166 

rates from the simulated data for 10 species (points). Lines represent the estimated relationship for 167 

each species. The second figure shows the relationship between equilibrium frequency and the strength 168 

of NFD in each simulated community (red lines are the fitted log-log relationship). The third figure shows 169 

histograms of the ‘Null’ pattern estimated from the shuffled data in 5000 randomizations. The vertical 170 

red line is the pattern estimated from the simulated data for comparison. This is how p values were 171 

calculated (for use in false discovery rate control). The dispersion parameter was constant (A, k=1), 172 

increased with rarity (B, k=10*f), or decreased with rarity (C, k=0.1/f). In this scenario with a moderate 173 

relationship between equilibrium frequency and NFD, the randomization methods cannot distinguish 174 

between an artificial relationship created by uncertainty in the observations and the real pattern. 175 
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Figure S7: Results of simulation of Scenario 4, using the same methodology applied to the real 182 

community data. The first figure in each panel shows the calculated relative abundances and growth 183 

rates from the simulated data for 10 species (points). Lines represent the estimated relationship for 184 

each species. The second figure shows the relationship between equilibrium frequency and the strength 185 

of NFD in each simulated community (red lines are the fitted log-log relationship). The third figure shows 186 

histograms of the ‘Null’ pattern estimated from the shuffled data in 5000 randomizations. The vertical 187 

red line is the pattern estimated from the simulated data for comparison. This is how p values were 188 

calculated (for use in false discovery rate control). The dispersion parameter was constant (A, k=1), 189 

increased with rarity (B, k=10*f), or decreased with rarity (C, k=0.1/f). In this scenario with a strong 190 

relationship between equilibrium frequency and NFD, the randomization methods correctly detect a 191 

significant pattern, while accounting for the biased pattern created from observation uncertainty. 192 

  193 
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