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1. Table S1. Mutualistic networks used in the coevolutionary simulations. The matrices describing the networks analyzed are available under request. Network labels follow (Bascompte et al. 2006; Rezende et al. 2007b).

	Network
	Interaction
	Reference

	BAHE
	Pollination
	(Barrett & Helenurm 1987)

	DIHI
	Pollination
	(Dicks et al. 2002)

	DISH
	Pollination
	(Dicks et al. 2002)

	EOL
	Pollination
	(Elberling & Olesen 1999)

	KT90
	Pollination
	(Kato et al. 1990)

	IPNK
	Pollination
	(Inouye & Pyke 1988)

	MEMM
	Pollination
	(Memmott 1999)

	MOMA
	Pollination
	(Mosquin & Martin 1967)

	MOTT
	Pollination
	(Motten 1982)

	OLLE
	Pollination
	(Ollerton et al. 2003)

	SMAL
	Pollination
	(Schemske et al. 1978)

	CACG
	Seed dispersal
	(Carlo et al. 2003)

	CACI
	Seed dispersal
	(Carlo et al. 2003)

	FROS
	Seed dispersal
	(Frost 1980)

	GEN2
	Seed dispersal
	(Galetti & Pizo 1996)

	Guitián
	Seed dispersal
	(Guitián 1983)

	HRAT
	Seed dispersal
	(Jordano 1985)

	NCOR
	Seed dispersal
	(Jordano et al. 2009)

	SNOW
	Seed dispersal
	(Snow & Snow 1971)

	WYTH
	Seed dispersal
	(Snow & Snow 1988)


2. Exploring parameter space

We ran a set of simulations to assess how the choice of parameter values in the model affected evolutionary dynamics. We used as a baseline the same parameter values we reported in the text, varying each parameter individually. We performed this additional set of simulations by using a real network (NCOR, S1) that describes the interactions between plants and fruit-eating animal in Nava de las Correhuelas, SE Spain (Fig. 1F).

We first investigated the sensitivity of our results to different initial conditions. In our original model, initial trait values were randomly sampled from normal distributions. We tested two other distributions of initial trait values: (1) animals and plant traits randomly assigned by sampling uniform distributions, and (2) animals and plant traits sampled from distributions based on the actual phenotype values of interacting species. We used the distribution of bill gape widths and seed diameters found in the interacting species in NCOR network. The latter phenotypic distribution follows an exponential distribution, whereas the bill gape width follows a normal distribution. The confidence intervals for mean degree of complementarity and convergence show high overlap among simulations with different initial conditions (Fig. S1), indicating the choice of the initial distribution of traits did not result in any qualitative difference in outcomes. [image: image1.png]Evolutionary outcome
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Fig. S1: Mean degree of complementarity and convergence for three sets of initial conditions of trait values: traits sampled from normal distribution (green), from uniform distributions (red) and from distributions based on actual data on species-specific phenotypic values (yellow). Error bars represent the associated 95% confidence intervals.

We then investigated the role of different rates of background evolution and network-derived evolution in generating complementarity and convergence. Background evolution created random variation in complementarity and convergence, whereas simple directional changes increased the complementarity of partners and convergence among species in the same trophic level. As a consequence, rates of network-derived evolution (q) higher than background evolution (p), q/p > 1 led to an increase in both complementarity and convergence (Fig. S2). Nonetheless, the confidence intervals for the degrees of complementarity and convergence showed broad overlap throughout most q/p values (Fig. S2). In this sense, the confidence intervals for the outcomes of the ratio parameter used in the simulations, q/p= 10, showed broad overlap with the outcomes of ratios that were orders of magnitude smaller (q/p= 10-3) or larger (q/p= 102) (Fig.S2).
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Fig. S2: Mean degree of complementarity (a), convergence among animals (b) and plants (c) for different ratios between rates of directional (q) and random (p) phenotypic changes. Error bars represent 95% confidence interval. The red circles represent the benchmark value for the parameter.

Accordingly, the association between ecological dependence and evolutionary change, m, was only weakly related to the degree of complementarity and convergence achieved (Fig S3). In fact, even for extreme m-values, such as 
[image: image3.wmf]  

m

=

0

.

2

 and 
[image: image4.wmf]  

m

=

1

.

0

, the confidence intervals for degree of complementarity and convergence showed significant overlap (Fig. S3). Similar results were also observed heritability, h2 (Fig. S4). Finally, convergence and complementarity increased with the number of time steps (Fig. S5), until asymptotic values were reached. In this context, the value used in simulations (104 time steps) was adequate to generate asymptotic values for complementarity and convergence (Fig S5).
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Fig. S3: Mean degree of complementarity (a), convergence among animals (b) and plants (c) for different values of m (relationship between ecological and evolutionary dependence). Error bars represent 95% confidence interval. The red circles represent the benchmark value for the parameter.
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Fig. S4. Mean degree of complementarity (a), convergence among animals (b) and plants (c) for different values of heritability. Error bars represent 95% confidence interval. The red circles represent the benchmark value for the parameter.
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Fig. S5: Mean degree of complementarity (a), convergence among animals (b) and plants (c) for simulations with different number of time steps. Time steps were measured using the number of independent events of change (IEC), which is the sum of events of trait evolution generated by p and q. Error bars represent 95% confidence interval. The red circles represent the benchmark value for the parameter. 
2. Additional information about simulations with and without supergeneralists
3.1. Supergeneralist: definition
Mutualistic networks often show evidence of modularity (Fonseca & Ganade 1996; Guimarães et al. 2007; Olesen et al. 2007), in which subgroups (modules or compartments) of species interact more with each other than with other species within the network. Here, we used the approach introduced by Guimerà & Amaral (2005a, b) for mapping the structure of complex networks and adapted for mutualistic networks to identify supergeneralists by Olesen et al. (2007). This approach is based on the use of a simulated annealing algorithm (SA) to identify modules within a network, see Guimerà & Amaral (2005a, b) for additional information. After identification of modules, it is possible to define the role of a species i in the module s, using two different metrics: standardized within-module degree and among-module connectivity (Guimerà & Amaral 2005b; Olesen et al. 2007). All analyzes were performed using the software NETCARTO (kindly provided by Roger Guimerà).

The standardized within-module degree of species i, zi, is defined as [image: image8.wmf]  
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, in which kis is the number of interactions of species i with other species in s (i.e., the within-module degree), [image: image9.wmf]  
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 and SDks are, respectively, the mean and standard deviation of the within-module degree of all species in s. Therefore, the larger the zi, the higher the relative number of interactions of species i with other species within its own module. The among-module connectivity of species i, ci, is defined as:






[image: image10.wmf]  

c

i

=

1

-

k

it

k

i

æ 

è 

ç 

ö 

ø 

÷ 

t

=

1

N

M

å

2

,

in which NM is the number of modules within the network, ki is the number of interactions of species i, kit is the number of interactions of i with species in module t. The higher the ci, the more evenly distributed are the interactions of i across species in different modules. We followed the concepts introduced by Olesen et al. (2007) for analyzing combinations of zi and ci and heuristically defined a supergeneralist as a network hub, i.e., a central species within its own module, zi > 2.5, and simultaneously interacting with species in different modules in a similar way, ci > 0.62 (Olesen et al. 2007).

3.2. Scenarios
Supergeneralists differ of other species in the network by interacting with many species in the different modules within the network. To explore the impact of the evolution of supergeneralists, we simulated the evolutionary dynamics in three scenarios based on the actual structure of real networks with supergeneralists. The first scenario simulates the evolutionary dynamics using the actual real network. The second scenario simulates a decrease in the among-module connectivity, i.e., supergeneralists did not glue the whole network by interacting with species in many different modules. Rather, specialists are similar to any other species in the network in their patterns of interaction with other modules. The third scenario assesses this effect by separating the role of supergeneralists as simple providers of additional interactions vs. their role connecting different modules together (gluing subsets of species that otherwise would remain unconnected).

a) Scenario 2: networks without supergeneralists

The second scenario simulates the network structure prior the evolution of supergeneralists by selectively removing part of the interactions of supergeneralists and other species in the network. We reduced g, which is the number of modules with which a species interacts, for all supergeneralist species. To do that, we used the following algorithm: (i) we computed gm, defined as the median number of modules with non-supergeneralist species interact in the real network, and (ii) for any supergeneralist i in the real network, we removed the interactions of i with all species of a randomly selected module until gi = gm. All modules, except for the supergeneralist’s own module, could have been selected with the same probability. We then (iii) simulated the evolutionary dynamics in the resulting network, and (iv) repeated (i) to (iii) for 100 iterations, recording the frequency of different classes of evolutionary events (Fig. 1) and the degree of complementarity and convergence. Moreover, we recorded final connectance in all replicates, which we used in the second scenario (below). Note that this algorithm allows us to reduce the number of links of supergeneralists, keeping constant the patterns of interaction of any other species in the network. In this scenario, there is no particular species using a large set of species in different modules. Thus, scenario 2 can be viewed as a description of how the structure of a mutualistic network would look like prior the emergence of supergeneralists and their lifestyle that rely upon a diversity of modules to survive.

b) Scenario 3: control


By increasing the number of interactions among modules, supergeneralists also increase the total number of interactions in the network. We used the scenario 3 (Control) to detangle between the evolutionary effects of these two structural shifts due to supergeneralists. In the scenario 3, we randomly reduce the total number of interactions by using the following algorithm: (i) we randomly selected without replacement a network generated from the second scenario as a benchmark; (ii) we randomly removed interactions from the real network until the final connectance be the same as the connectance of benchmark network; (iii) we simulated the evolutionary dynamics in the resulting network; and (iv) we repeated (i) to (iii) for 100 iterations, recording the frequency of different classes of evolutionary events (Fig. 1) and the degree of complementarity and convergence. We kept at least one interaction per species, because species without interactions are biologically meaningless. The algorithm for Control led to networks with the same number of interactions that networks generated through Scenario 2, but without targeting interactions that supergeneralist create between modules. Thus, Scenario 3 controls for evolutionary consequences of shifts in number of interactions.
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