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To avoid extirpation (local extinction) in rapidly changing 
environments, species must either migrate to other suitable 
locations or adapt or respond through phenotypic plasticity to 

new conditions in current habitats1,2. However, most efforts to fore-
cast biological responses to climate change do not fully consider the 
contributions of migration and adaptation at the population level 
and instead assume that all populations within a species respond 
similarly to environmental change. While some studies have inte-
grated intraspecific variation with predictions of species range 
shifts (for instance, using species distribution models3–5), these 
approaches rarely capture the continuous nature of population-level 
adaptive variation present across species ranges (but see refs. 6,7 for 
examples of other approaches of integrating intraspecific variation 
with climate change predictions). Assessing the need for popula-
tions to migrate and/or adapt in rapidly changing environments 
has the potential to provide richer insights into climate change vul-
nerability that may help inform where conservation efforts may be 
most effective.

Rapid climate change will pose numerous threats to climatically 
adapted populations. While spatial shifts in climate could require 
populations to migrate rapidly to track suitable habitats, the emer-
gence of novel climates and the loss of existing climates may require 
some level of adaptation for populations to persist. For instance, 
populations adapted to disappearing climates (that is, contemporary 
combinations of temperature and precipitation with no future ana-
logue8,9) can avoid extirpation through plasticity or genetic rescue 
by gene flow or allele frequency change in situ, potentially resulting 
in novel genotype–climate associations (that is, associations with 
no near equivalent with standing patterns of genetic variation). 
Similarly, novel climates (that is, future combinations of tempera-
ture, precipitation and so on with no contemporary analogue9), in 
which existing genotypes may have had no recent selection history, 
could favour the evolution of novel genotype–climate associations 
through the recombination of existing climate-adaptive alleles. 
High climate novelty could also cause range contractions if future 

climates are far outside the climatic tolerances of existing popula-
tions. While both disappearing and novel climates represent risks to 
climatically adapted populations in situ, migration has the potential 
to dampen these effects. If propagules or alleles can disperse (or be 
moved) to climates to which they are preadapted, the risk of extir-
pation and range contraction could be lessened. In the absence of 
natural migration, moving individuals long distances (for example, 
through assisted gene flow or migration) has been proposed as a 
way to conserve vulnerable populations by minimizing future mal-
adaptation10–12. Quantifying the need for populations to adapt and 
migrate (naturally or otherwise) can therefore provide a more com-
prehensive and biologically meaningful assessment of the risks that 
populations may face in future climates.

Here, we integrate concepts of novel and disappearing climates 
with adaptive genetic variation to map where populations may 
be most preadapted or maladapted to future climates (Fig. 1). As 
a case study, we used 75 single nucleotide polymorphisms (SNPs) 
in the Populus flowering-time gene network in balsam poplar  
(P. balsamifera L., Supplementary Table 1)13,14 to model future mal-
adaptation to climate. Flowering-time genes are involved in phe-
nology, which will be crucial to the maintenance of species ranges, 
tree growth, reproductive success and ultimately population viabil-
ity in future climates15,16. Using generalized dissimilarity models 
(GDMs (ref. 17), Supplementary Fig. 1) and gradient forests (GFs 
(ref. 18), Supplementary Fig. 2), we modelled the turnover of adap-
tive genetic variation as a function of climatic differences between 
81 populations (Extended Data Fig. 1) and derived three metrics 
of potential maladaptation that we term local, forward and reverse 
genetic offsets. The results from the GDMs and GFs were similar, so 
we focus on GDMs in the main text unless specifically noted. The 
GF results are shown in the Supplementary Information.

Genetic offset, following ref. 19, represents the disruption of cur-
rent genotype–climate relationships due to rapid shifts in climate. 
Local offset assumes that populations do not migrate in response 
to climate change and represents vulnerability in the context of a 
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population tolerating climate change in situ (Fig. 1(ii)). Local offset 
was calculated by estimating a temporal measure of offset for a resi-
dent population on the basis of the predicted in situ change in allele 
frequencies at climate-adaptive loci necessary to respond to local 
changes in climate over the next 50 years (2070). For long-lived ses-
sile organisms, with long generation times, local offset may be the 
most relevant metric of vulnerability. Forward offset, in contrast, 
assumes that populations have unlimited migration ability and was 
calculated by identifying the minimum predicted offset if propa-
gules or alleles, via gene flow, could move (or be moved) anywhere 
in North America (Fig. 1(iii)). Forward offset can be interpreted as 
the relative possibility of contemporary genotype–climate associa-
tions disappearing from the landscape assuming that populations 
were unconstrained by migration. Reverse offset is similar to the 
concepts of novel climate and novel species assemblages8,9, but 
applied to the adaptive genetic composition of populations, repre-
senting the possibility that any population in the current range will 
be preadapted to a particular location in the future. Reverse offset 
was calculated by identifying the minimum offset between hypo-
thetical populations within the current range in the future climate 
and populations in the current climate (Fig. 1(iv)). We also mapped 
the distance and direction populations would need to migrate to 
minimize forward offset, and we tested the effect of limiting migra-
tion to five distance bins (50, 100, 250, 500 and 1,000 km).

While the predicted patterns of local, forward and reverse offsets 
varied throughout the range of balsam poplar, some generalities did 
emerge (Fig. 2, Extended Data Figs. 2–4 and Supplementary Figs. 3 
and 4). Local, forward and reverse offsets tended to be lowest in the 
centre of the range, indicating that these populations were predicted 

to (1) experience minimal future disruption to the genotype–climate 
association at their current location (that is, low local offset, assum-
ing no migration), (2) have current genotype–climate associations 
that are similar to those in other regions of North America under 
future climate (that is, low forward offset, assuming migration) and 
(3) have future genotype–climate associations that are similar to 
those in the current climate existing elsewhere in the range (that is, 
low reverse offset). The GDM and GF results were similar for local, 
forward and reverse offsets (spatially corrected r, 0.60, 0.67 and 
0.45; P, 0.06, <0.01 and <0.01, respectively). Together, low local, 
forward and reverse offsets suggest that populations in the centre 
of the range may be the most preadapted to future climate for the 
phenology-associated genes we assessed. In contrast, the eastern-
most and northernmost parts of the range were predicted to have 
relatively high local, forward and reverse offsets (Fig. 2), indicating 
that there are no existing populations, either locally or elsewhere in 
the range, that are predicted to be preadapted to future climates in 
the eastern and northern parts of the range. High local and forward 
offsets suggest that eastern and northern populations are likely to 
be particularly vulnerable to climate change, as the impacts of local 
climate shifts cannot be mitigated by migration or movement to 
more suitable climate. As such, for this set of phenology-associated 
genes, populations in the eastern and northern parts of the range 
are likely to be the most at risk of extirpation due to climate change, 
potentially resulting in range contraction near the contemporary 
longitudinal range edges.

Local and forward offsets were most strongly associated with 
shifts in winter and/or summer precipitation (Supplementary Fig. 5),  
but they were also correlated with the underlying pattern of genetic 
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Fig. 1 | Schematic of how local, forward and reverse offsets were calculated and mapped for GDMs. After fitting a GDM to the pairwise fixation index 
(FST) of climatically adaptive SNPs (i), the model is used to predict local (ii), forward (iii) and reverse (iv) offsets. Local offset is calculated following 
Fitzpatrick and Keller19. Forward offset is calculated by predicting FST between each cell in the range in the current climate and all cells in North America in 
the future climate and selecting the minimum value. Reverse offset is calculated by predicting FST between each cell in the range in the future climate and 
all cells in the range in the current climate and selecting the minimum value. The maps are simultaneously plotted as a red–green–blue (RGB) image (v) 
(Fig. 2). The grey polygons are the balsam poplar’s contemporary range35, with the exception of T2 in iii (North America exclusive of Mexico).
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variability (that is, population structure). The strengths of the cor-
relations between local/forward offsets and climatic shifts largely 
match the most important variables used to parameterize the GDMs 
(Supplementary Table 2) and GFs (Supplementary Fig. 2), in par-
ticular winter precipitation. The potential confounding influence of 
population structure on local/forward offsets is further complicated 
in that population structure itself is correlated with climate shifts, 
especially winter/summer precipitation and mean diurnal range. 
Additional work is needed to parse the influences of local climate 
shifts and population structure on the offset metrics.

Migration distances and direction
The geographic distances to locations that minimized forward off-
set were only weakly correlated with forward offset (ncell = 29,942, 
r = 0.12, P = 0.35), suggesting that, across populations, the need 
to migrate longer distances was not necessarily associated with a 
higher adaptive offset. The distances to locations that minimized 
future maladaptation for the phenology-associated genes we 
assessed (Dmin) were largest in the eastern portion of the range, 
where they exceeded 5,000 km (Fig. 3, Extended Data Fig. 5 and 
Supplementary Figs. 6 and 7). The locations corresponding to Dmin 
for much of the northeastern portion of the range were in moun-
tainous regions in the western half of North America, indicating 
that populations in the easternmost portion of the range would need 
to migrate (or be moved) across nearly the entire North American 
continent to minimize future disruption of existing genotype– 
climate associations. These distances probably exceed what could 

realistically be expected naturally given seed (and even pollen) dis-
persal limitations and the predominant west–east wind patterns in 
North America. The shortest Dmin estimates, in contrast, occurred 
along the southern/southeastern range edge (near the northeastern 
United States and Ontario, Canada) and in the northern portion 
of the range in Alaska, often near mountainous areas. These short 
distances could be reachable by 2070, given that poplars are wind 
dispersed with short generation times. Few (<1%) locations had a 
Dmin of zero, suggesting that populations in nearly all parts of the 
range would need to disperse propagules some distance to reach 
the locations that they are most preadapted to in the future, barring 
allele frequency change in situ.

Restricting the maximum allowable migration distance to one 
of multiple distance bins (that is, 50, 100, 250, 500 and 1,000 km) 
necessarily increased forward offset (Fig. 4 and Supplementary  
Figs. 8–12) but also revealed a declining benefit of lowered for-
ward offset as migration distances increased. For instance, forward 
offset across all cells decreased by 52.8% (ncell = 29,942) when the 
maximum migration distance was expanded between 0 and 500 km, 
whereas the average decline in forward offset between 500 and 
1,000 km was only 14.3%. This pattern suggests that, while there 
is a benefit to migration, forward offset can also be considerably 
reduced even if the global minimum offset cannot be reached.

Our analyses further indicate considerable variability in the 
direction populations would migrate to minimize future malad-
aptation of phenology-associated genes. While the GFs predicted 
mostly north-northwestward shifts to minimize maladaptation, the  
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Fig. 2 | RGB map of local (red), forward (green) and reverse (blue) offsets. a, RGB map as shown in Fig. 1. b–d, Bivariate scattergrams of a, with 1:1 lines. 
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predictions from the GDMs were more complex. For example, while 
most (82.8%) locations within the range had an overall northward 
trajectory (that is, the location that minimized forward offset was 
at a higher latitude than the source cell), the GDMs predicted con-
siderable variability along the southernmost range edge (Fig. 3b), 
where populations exhibited westward, eastward or even southward 
trajectories. The variability in population-level trajectories was espe-
cially apparent in the upper Great Lakes region, where migration 
direction varied over short distances. Recent observational studies 
have shown similar variability when populations are aggregated 
over entire species20,21. Fei et al.20, for instance, showed that over the 
past 30 years, eastern North American tree species have more often 
shown a westward shift in abundance than a poleward shift. The 
authors propose that this is due to shifting precipitation regimes and 
moisture availability increasing climatic suitability for eastern tree 
species in the centre of North America. Precipitation variables were 
similarly among the most important in our GDMs (Supplementary 
Table 2) and GFs (Supplementary Fig. 2), and changes in precipita-
tion patterns may explain some of the non-northward trajectories 
in our predictions.

Advances and applications
The impacts of climate change across species ranges will be medi-
ated by the collective ability of climatically adapted populations to 
adapt and/or migrate in response. Our study estimates the contribu-
tions of migration and adaptation by developing a spatially explicit 
understanding of the influence of local maladaptation, minimum 
migration distances and genotype–climate novelty on climatically 
adapted populations. In doing so, we attempt to shed new light on 
several major unresolved questions concerning how climate change 
may affect biodiversity, specifically: (1) where will climate change 
cause the greatest mismatch between climatically adapted popula-
tions and climate, and (2) which existing populations may be the 
most preadapted or maladapted to future climates? By simultane-
ously calculating multiple metrics of maladaptation and considering 
migration distances, our approach provides insight into the mag-
nitude of in  situ adaptation versus migration and helps elucidate 
where migration and adaptation may be most effective at reduc-
ing the genetic offset under future climates within the range. It is 
important to emphasize that our approach makes no attempt to pre-
dict the actual responses of populations over multiple generations to 
adapt or migrate22; rather, we shed light on where these evolutionary 
processes may be most needed to maintain the status quo of cur-
rent climate adaptation with regard to a set of phenology-associated 
genes. Nevertheless, our approach provides informative metrics of 
population-level vulnerability to climate change that may serve as a 
useful baseline for understanding where populations may be most 
at risk from climate change.

Contrary to some theoretical work (for example, see ref. 23), we 
found that the vulnerability of balsam poplar to climate change 

was not exclusively greatest along the trailing (southern) edge of 
the range, but rather at the longitudinal extremes of the range. The 
higher vulnerability of populations at the longitudinal margins of 
the range partly reflects the fact that the effects of temperature were 
secondary to the effects of winter precipitation in driving the dif-
ferentiation of the SNPs we investigated. The effect of winter pre-
cipitation is probably partially due to several of the SNPs in the 
flowering-time gene network being involved in phenological pro-
cesses that occur during the cool season (for example, vernalization 
and dormancy) and/or are related to water use (for example, the 
biosynthesis of abscisic acid, which contributes to the regulation of 
bud dormancy and drought response). These findings are consis-
tent with previous work showing preseason precipitation to be an 
important driver of spring phenology24,25. Change in winter precipi-
tation, the most important variable in our model, is predicted to be 
the greatest in the eastern and northernmost parts of the range of 
balsam poplar. Greater winter precipitation combined with warmer 
winter temperatures probably results in warmer/wetter winter con-
ditions that populations have not experienced in the recent past, 
resulting in high adaptive offset in the eastern and northern parts of 
the range. These findings are consistent with recent work suggesting 
that accounting for local adaptation when predicting range shifts 
could yield results contrary to the leading/trailing-edge paradigm 
of range shifts (that is, as ranges shift poleward, trailing edge pop-
ulations are most vulnerable to climate change as they will be the 
first to experience temperatures outside species’ climatic niches26,27). 
Similarly, numerous empirical studies have reported that recent 
climate-driven range shifts are rarely uniformly poleward20,21,28,29 
and may be in multiple directions. Together, our results suggest that 
explicitly considering genotype–climate associations of multiple loci 
across multiple climatic gradients could yield a considerably more 
complex view of climate change responses than the poleward range 
shifts typically assumed in response to increased temperatures.

The metrics of population vulnerability to climate change that 
our approach provides may have applications in conservation and 
restoration efforts. For instance, assisted migration or gene flow, 
which rely on moving individuals to areas with suitable future cli-
mates outside the range (assisted migration) or within the range 
(assisted gene flow), could benefit from being able to identify 
which populations are most preadapted to future climates and how 
far these populations would have to disperse propagules. Assisted 
migration and gene flow are likely to provide the greatest benefit to 
dispersal-limited species with long generation times and may be the 
only option for some populations to avoid extirpation. Conversely, 
small, isolated populations with poor pollen and seed dispersal abil-
ity that are predicted to be maladapted to all future climates could 
be candidates for targeted germplasm sampling to ensure that rare 
adaptive alleles remain available for future breeding or restoration 
programmes. In instances when climatically adapted genes can be 
identified and ideally something about their function is known, 
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genetic offset metrics could provide biologically meaningful guid-
ance for the conservation of climatically adapted populations, 
beyond that offered by climate matching approaches or species dis-
tribution models.

Limitations and future work
While our approach offers unique insights into the magnitude of cli-
mate change disruption of climate adaptation, it also makes numer-
ous simplifying assumptions that warrant further investigation and 
lend caution to their use in applied studies. First, the offset metrics 
implicitly assume that the current pattern of genetic differentiation 
across space can be used to estimate the disruption of genotype–cli-
mate associations. Because space-for-time substitutions are correl-
ative, lack the mechanisms that will shape future patterns of genetic 
variation (for example, selection and gene flow) and do not account 
for potential plastic responses to climate change, they must be used 
with caution. However, using SNPs with an a  priori relationship 
with climate14, related to a temporally and spatially varying trait 
(that is, phenology30), helps ensure that we are modelling a robust, 
reliable genotype–climate signal. Furthermore, recent experimental 
work using information from common gardens suggests that offset 
metrics can be reliable metrics of climate maladaptation31. Second, 
because offset metrics are based on metrics of genetic differen-
tiation (especially GDMs), using our approach does not identify 
the specific alleles that may need to shift frequencies to minimize 
maladaptation. We therefore cannot predict the actual novel geno-
types in future populations—only that future populations may be 
genetically similar or dissimilar from current populations at the 
set of loci we assessed. Finally, our models emphasize only adap-
tation to climate and have been parameterized for a small set of 
SNPs involved in one aspect of climate adaptation. While focusing 
on climate adaptation is appropriate for SNPs related to phenology, 
many additional genes and gene pathways probably contribute in 
a polygenic fashion to climate adaptation, especially those related 
to abiotic stress responses. Additionally, populations are likely 
to experience unique biotic interactions in future climates32. It is 
therefore important to emphasize that the offset metrics calculated 
here are only relevant to the specific SNPs used in our study and 
are not meant to portray a comprehensive genome-wide view of 
climate maladaptation, nor are they generalizable to other portions 
of the genome responsive to non-climatic factors, such as biotic 
interactions or edaphic factors.

Our analyses were conducted on a small set of loci in balsam 
poplar associated with phenology, which have a well-studied 
physiological and phenotypic relationship with climate and are 
climatically adaptive in balsam poplar33. However, our approach is 
generalizable to any number of loci having a robust association with 
climate. Further insights could be gained by assessing the pattern 
of forward and reverse offsets of loci associated with other climati-
cally adaptive traits (for example, heat and drought tolerance and 
growth rates). Assessing loci associated with other traits could help 
elucidate the variable impacts that climate change may have on dif-
ferent parts of the genome, and could inform whether populations 
are preadapted to a single location on the landscape or, more likely, 
whether genomic regions underlying different functional traits will 
be preadapted to different locations on the future landscape. Such 
information will be crucial to understanding and mitigating the 
effects of climate change on adaptation in forest trees.

Conclusion
Populations, not species, respond to climate change, and these 
responses are likely to include a complex interplay of migration 
and adaptation to avoid extirpation1,2,34. Here, we attempt a step 
towards accommodating this complexity in assessments of cli-
mate change vulnerability by estimating the contributions of 
population-level climate maladaptation, minimum migration dis-
tances and genotype–climate novelty. We found a rich assortment 
of risks from climate change across the range of balsam poplar, 
including high local, forward and reverse offsets and migration 
distances in the eastern portion of the range and low offsets and 
migration distances in the centre of the range. This suggests that 
eastern populations may face the greatest relative vulnerability to 
climate change and the greatest relative risk of future extirpation. 
More broadly, our work shows that, just as some climates and bio-
logical communities may disappear from the future landscape and 
novel ones may emerge in their place9, the same concepts apply to 
the genetic composition of climatically adapted tree populations. 
The concepts of forward and reverse genetic offsets provide a new 
way to consider population-level risk of future climate change that 
accounts for climate adaptation and goes beyond the constraints of 
species-level predictions.
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Methods
Balsam poplar. Balsam poplar is a northern broad-leaved forest tree species that 
occurs over a large portion of the boreal region in North America spanning more 
than 30 degrees of latitude and multiple broad climatic gradients35. The centre of 
the range is in central Canada, which is expected to see among the highest levels 
of future warming in North America36. Trees in the Populus genus have emerged 
as a model system for landscape genomic studies of local adaptation to climate37, 
and studies of balsam poplar, in particular, have shown it to be climatically adapted 
for numerous functional traits33,38 and its adaptive variation to be climatically 
structured39.

GDMs and GFs. We used GDMs and GFs to map predictions of local adaptation 
to climate (Supplementary Figs. 1 and 2). GDMs (ref. 17) use a type of nonlinear 
matrix regression that accounts for the curvilinear relationship between 
climatic (and optionally, geographic) distance and genetic differentiation among 
populations separated along environmental gradients. A GDM fits a linear 
combination of monotonic I-spline functions to each predictor that characterizes 
its unique contribution to the magnitude (height) and rate (shape) of genetic 
differentiation along that gradient. GFs (ref. 18), in contrast, are an extension of the 
random forest approach, which models allele frequencies as nonlinear functions 
along climate gradients19. A GF fits an ensemble of regression trees using random 
forest and then constructs ‘cumulative importance’ turnover functions from these 
models by determining how well partitions distributed at numerous ‘split values’ 
along each gradient explain genetic patterns on either side of a split. Locations 
of high split importance represent thresholds where genetic change is rapid, and 
important gradients will have greater overall cumulative importance.

We fit GDMs and GFs to genetic differentiation (FST) and minor allele 
frequencies, respectively, of 75 SNPs in the Populus flowering-time gene network 
genotyped in 995 individuals from 81 populations from across the range of 
balsam poplar14. Genes in the flowering-time network are associated with both 
reproductive and vegetative plant phenology by regulating the timing of seasonal 
growth, dormancy and reproduction within the permissive growing season. We 
selected SNPs that had a relationship with environment, identified using Bayenv2 
(ref. 40) and latent factor mixed models41. We used SNPs and population data 
described in ref. 14 and used a similar approach to identifying outlier SNPs but 
substituted principal components for summer and winter mean temperature and 
precipitation, isothermality and mean diurnal range42—identical to the climate 
variables used in our GDMs and GFs (see below). Outliers from the latent factor 
mixed models were identified on the basis of a significant relationship with 
any of the six bioclimatic variables, assuming a false discovery rate of 0.01. We 
transformed the P values before calculating the false discovery rate using the 
genomic-control method, implemented in the lfmm.pvalues function in the LEA 
package43 in R. Outliers from Bayenv2 were identified on the basis of having 
both a significant Spearman’s ρ and a Bayes factor in the top 5% of loci for each 
bioclimatic variable. This resulted in 75 SNPs identified as outliers across  
24 genes by either Bayenv2 or latent factor mixed models. On the basis of  
these 75 climate-associated candidate SNPs, for the GDMs, we calculated a 
multilocus pairwise FST among the 81 populations with at least 5 individuals  
using the genet.dist function in the hierfstat package44 in R. Any pairwise  
FST values less than zero were assigned a value of zero. For the GFs, we used  
minor allele frequencies from ref. 14.

The GDMs and GFs were parameterized with six bioclimatic variables that 
lacked strong correlation (|r| < 0.75). These included summer and winter mean 
temperature (bio10 and bio11) and precipitation (bio18 and bio19), isothermality 
(bio3), and mean diurnal range (bio2) downloaded from the WorldClim dataset42, 
at a resolution of ten arc minutes. We considered including geographic distance 
in the GDMs but found a negligible improvement in model performance with 
its inclusion (cross-validation R2 with geographic distance, 68.38%; without 
geographic distance, 68.04%), suggesting that the climate variables in the 
models are accounting for much of the explained spatial variation in genetic 
differentiation. The models were parameterized in the current climate (centred 
on ~1975) and predicted to the future climate (centred on 2070) of a composite 
average of five global circulation models (UCAR Community Climate System 
Model, NOAA Geophysical Fluid Dynamics Laboratory Coupled Physical Model, 
MET Office Hadley Center Earth System Model, NASA Goddard Institute for 
Space Studies-E2-R and Norwegian Earth System Model). We performed all 
analyses using two different emission scenarios (RCP 4.5 and 8.5) for 2070. The 
results and discussion refer to the composite mean of the five RCP 8.5 projections 
for 2070 unless specifically noted. The GDMs were fit using the gdm package45 and 
the GFs using the gradientForest package18 in R.

Genetic offset metrics. The GDMs used to predict genetic offset metrics explained 
70.8% of the deviance in FST, and tenfold cross-validation revealed an R2 of 68.0%. 
Variable permutation revealed that winter precipitation was the most important 
variable in the model. Isothermality (mean diurnal range divided by annual 
temperature range) and summer temperature were of secondary importance, while 
summer precipitation, mean diurnal range and winter temperature were least 
important (Supplementary Table 2). The GFs had an average R2 of 38.5% across all 
75 SNPs (range, 1–71%) and identified winter precipitation as the most important 

variable, followed by mean diurnal range, summer precipitation, isothermality, 
winter temperature and summer temperature (Supplementary Fig. 2).

We used GDMs (Fig. 1(i)) and GFs to quantify the disruption of adaptive 
genotype–climate associations expected under climate change using three different 
formulations of genetic offset: local (Fig. 1(ii)), forward (Fig. 1(iii)) and reverse 
(Fig. 1(iv)). It is important to note that the units of the offset metrics differ between 
GDMs and GFs. While GDMs directly model FST, GFs transform climate variables 
to genetic importance values. Genetic distances are then calculated as the Euclidean 
distance between genetic importance values19. Below, we refer to these predicted FST 
values and Euclidean distances as ‘genetic differentiation’ unless otherwise specified.

Following Fitzpatrick and Keller19, local offset (a metric of maladaptation 
with regard to a population tolerating climate change in situ) was calculated by 
predicting differentiation for climatically adaptive SNPs between the present and 
future climate at the same location, assuming no migration or gene flow. Forward 
offset is the minimum expected disruption in the genotype–climate association 
assuming that populations have unlimited dispersal capacity. Forward offset was 
quantified by first using the fitted GDMs and GFs to predict genetic differentiation 
between the current climate at each focal grid cell within the current range of 
balsam poplar and all future climate grid cells in North America (exclusive of 
Mexico). In other words, for each grid cell in the current range, we obtained a 
predicted genetic offset from that grid cell under the current climate to all other 
grid cells in North America under the future climate. Next, for each current 
climate grid cell, we identified the minimum predicted differentiation value (FST 
or Euclidean distance) from the pool of differentiation values across all future grid 
cells. We term the minimum value ‘forward offset’. The grid cell that minimizes the 
predicted genetic differentiation represents the location that minimizes forward 
offset, and the distance to that location represents the migration distance required 
to minimize maladaptation (Dmin). If multiple cells had an identical minimum 
offset, the one nearest to the focal pixel was chosen. High values of forward offset 
indicate that the population in that location is maladapted to all future North 
American climates and that contemporary genotype–climate associations in that 
population may disappear from the landscape. To assess the sensitivity of forward 
offset to dispersal constraints, we tested how forward offset varied when migration 
was limited to five distance classes: 50, 10, 250, 500 and 1,000 km. In addition to 
geographic distances, we calculated the initial bearing that populations would 
follow if they were to migrate to the location that minimized forward offset. 
Distance and bearing were calculated with the distGeo and bearing functions, 
respectively, in the geosphere package46 in R.

Reverse offset follows the same idea as forward offset but is calculated from the 
future climate to the current climate. In this case, we first used the fitted GDMs 
and GFs to predict genetic differentiation between each future climate grid cell 
within the current range of balsam poplar and all current climate grid cells within 
the current range of balsam poplar. We thus obtained a predicted genetic offset 
from each grid cell under the future climate to all other grid cells under the current 
climate, both within the current range of balsam poplar. From these predictions, 
we then identified the current climate grid cell with the minimum predicted 
offset from the pool of offset predictions across all current grid cells. We term 
the minimum value ‘reverse offset’. Reverse offset provides a metric of how novel 
the future genotype–climate association is predicted to be at a given site, relative 
to existing genotype–climate associations present at any location throughout the 
range under the current climate. As such, high values of reverse offset indicate 
genetic novelty, as there is no analogous genotype–climate association found 
anywhere in the current landscape. Note that for reverse offset, we only considered 
pixels within the current range of balsam poplar in both periods to ensure that 
future novelty in genotype–climate associations was quantified only with respect to 
locations where balsam poplar currently occurs (that is, within the current range) 
as opposed to the entirety of North America, as was done for forward offset. In 
other words, source populations for the reverse offset estimates can come only 
from existing populations, whereas existing populations could in principle occur at 
any future location, given suitable climate and sufficient dispersal.

While other approaches could be used to identify forward and reverse offsets 
(such as binning, rounding or thresholding offset values), our metrics were based 
on minimum values, as this allowed us to avoid selecting an offset threshold 
and allowed the minimum to occur anywhere in North America (in the case of 
forward offset) or anywhere within the range (in the case of reverse offset). Other 
well-studied systems, however, could benefit from applying thresholds, especially 
if a particular FST was known to be linked to a reduction in fitness or climate 
maladaptation (as could be quantified from provenance trials).

Note that while the offset metrics can inform the magnitude of expected 
genetic change required to minimize maladaptation, they tell us less about the 
nature of that change. Because offset metrics represent an aggregate metric of 
genetic change (FST and multidimensional Euclidean distance for GDMs and GFs, 
respectively), a more mechanistic understanding of particular loci responsive to 
shifts in climate would require a disaggregated, per-locus estimate.

To better understand the relationship between local climate change, population 
structure and local and forward offsets, we quantified the correlations (Spearman’s) 
between offset metrics, population structure and the magnitude of local climate 
change across our six climate variables. Reverse offset was not included in these 
analyses because this metric is not necessarily relevant to populations in their 
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current locations. Because we lacked a common set of neutral markers across all 
populations, we used a standardized set of ancestry coefficients from ref. 47 for 85 
balsam poplar populations to approximate population structure. The magnitude of 
local climate change was estimated as the difference between the future and current 
climates for each variable in our analysis.

To simultaneously visualize local, forward and reverse offsets, we mapped 
these three metrics as the red, green and blue bands of an RGB image, respectively. 
Because the values of local offset were systematically higher than those of forward 
and reverse offsets, we rescaled the values within each band to their quantiles 
before plotting. This ensured that the full range of each colour was possible in the 
RGB images, and is analogous to a histogram equalization performed on each 
band. We also tested for correlations between local, forward and reverse offsets and 
distances. We used a spatially corrected Pearson correlation coefficient to quantify 
these relationships. The spatial correlations were implemented with the SpatialPack 
package48 in R after projecting latitude/longitude coordinates to an equidistant 
projection (Azimuthal equidistant). The R code, population occurrences and 
genetic data to calculate local, forward and reverse offsets are available at github.
com/agougher/poplarAdaptiveOffset.

Because the results from the GDMs and GFs were similar, we focus the main 
text on GDMs as the output from the GDM prediction (FST) has direct biological 
meaning, unlike that from GFs (Euclidean distance of genetic importance values).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are publicly available. The allele frequencies are available in ref. 14, and the 
climate data are available at https://www.worldclim.org.

Code availability
The R code and genetic data to calculate local, forward and reverse offsets are 
available at github.com/agougher/poplarAdaptiveOffset.
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Extended Data Fig. 1 | Sampled population locations in geographic and climatic space. a, Geographic locations of populations used in GDM and GF 
models (blue circles), within balsam poplar’s range (white polygon). b, Position of populations (blue circles), and cells in balsam poplar’s range (black 
dots) in current North American climate space (gray circles). Red circles show the composite future climate (RCP 8.5) of North America used in 
predictions. Climate space is shown as the first two principal components (PCs) of current North American climate (mean diurnal range, isothermality, 
mean summer temperature, mean winter temperature, summer precipitation, winter precipitation), with future climates predicted into the same PCA 
space. b, is shown only for visualization purposes.
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Extended Data Fig. 2 | Red-green-blue map of local (red), forward (green), and reverse (blue) offsets. Offset values were calculated from Gradient 
Forest throughout the range of balsam poplar for 2070 and RCP 8.5. Brighter cells, closer to white, have relatively high values along each of the three axes 
while darker cells, closer to black, have relatively lower values. b-d, Bivariate scattergrams of (a), with 1:1 lines. Individual maps used in (a) are shown in 
Extended Data Fig. 4.
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Extended Data Fig. 3 | Local, forward, and reverse offsets from generalized dissimilarity models for balsam poplar. a & b, Local genetic offset, (c & d) 
forward offset, and (e & f) reverse offset from a generalized dissimilarity model for RCP 4.5 (first column; a, c, e) and RCP 8.5 (second column; b, d, f) for 
2070. Note the non-linear color scale.
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Extended Data Fig. 4 | Local, forward, and reverse offsets from Gradient Forest for balsam poplar. a & b, Local genetic offset, (c & d) forward offset, and 
(e & f) reverse offset from a Gradient Forest model for RCP 4.5 (first column; a, c, e) and RCP 8.5 (second column; b, d, f) for 2070.
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Extended Data Fig. 5 | Distance and initial bearing to locations that minimizes forward offset. Distance and (b) initial bearing were calculated from the 
focal cell to the location in future North American climate (2070, RCP 8.5) that minimizes predicted offset from a Gradient Forest model. Polar histogram 
in (b) shows the log10 number of cells in each bearing bin.
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