New Phytologist Supporting Information

Island woodiness underpins accelerated disparification in plant radiations

Nicolai M. Nürk, Guy W. Atchison, Colin E. Hughes

Manuscript accepted: 12 March 2019

The following Supporting Information is available for this article:

Table S1 Voucher – Information on species and sequence references included in the study, and coding of characters (distribution, life history, and growth form).

Table S2 Comparative diversification rate analysis: model specification and model fit (BayesRate).

 Table S3 Sampling fractions: exploratory rate heterogeneity analysis (BAMM).

Table S4 Plant height: growth form (phenotypic) evolution analysis detailing model fit (OUwie).

Figures S1–S4 Secondary woodiness – time trees incl. tip names and clade assignment detailing life history analysis comparing ML to SCM ancestral state estimations (ace & make.simmap), and island/non-island mappings for Echium (Fig. S1), Hypericum (Fig. S2), Lupinus (Fig. S3), and Silverswords–Tarweeds (Fig. S4).

Methods S1 Clade specific tree and trait data – *Phylogenetic reconstruction and age estimation* (*BEAST*), *fossils used for calibration, full references for trait data*.

Notes S1 *Hypericum* traits – *details on potential biases using mean plant height in the group.*

Table S1. Voucher – Information on taxa included in the study detailing species names per study group, clade assignment, mean plant height, coding of distribution (i, island; n, non-island) and life history traits (h, herbaceous; w, woody), and ENA/NCBI accession numbers of molecular marker used for phylogenies newly reconstructed in this study.

		Plant	Distri-	Life	e Molecular marker				
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
Echium	1								
E	<i>E. acanthocarpum</i> Svent.	170.0	i	w	EU048853	DQ315582	_	EU433604	EU433619
E	E. aculeatum Poiret	130.0	i	w	EU048849	DQ315568	EU599868	EU433600	EU433615
D	<i>E. albicans</i> Lag. & Rodr.	56.0	n	h	L43172	-	_	L43170	L43171
С	E. angustifolium Mill.	83.0	n	h	—	—	EU599871	EU600047	EU599959
А	E. arenarium Guss.	37.5	n	h	EU919584	_	_	_	_
D	E. asperrimum Lam.	65.0	n	h	L43176	-	—	L33347	L43175
E	<i>E. auberianum</i> Webb & Berthel.	80.0	i	w	L43180	DQ315596	EU599866	EU600042	EU599954
E	<i>E. bethencourtii</i> Santos	250.0	i	w	_	DQ315595	_	_	_
Е	E. bonnetii Coynci	25.0	i	h	L43184	DQ315578	EU599864	EU600040	EU599952
E	<i>E. brevirame</i> Spr. & Hutch.	60.0	i	w	L43188	DQ315594	_	L43186	L43187
E	<i>E. callithyrsum</i> Webb ex Bolle	72.0	i	w	L43196	DQ315573	_	L43194	L43195
E	E. candicans L.f.	162.5	i	w	EU048856	DQ315587	—	EU433607	EU433622
D	E. creticum L.	57.5	n	h	FJ763249	-	—	L43206	L43207
E	<i>E. decaisnei</i> Webb & Berthel.	135.0	i	w	EU048852	DQ315593	EU599867	EU600043	EU433618
E	<i>E. gentianoides</i> Webb ex Coynci	70.0	i	w	_	DQ315575	_	_	_
Е	E. giganteum L.f.	250.0	i	w	L43224	DQ315567	EU599870	EU600046	EU599958
Е	E. handiense Svent.	102.5	i	w	L43220	DQ315577	_	L43218	L43219
E	<i>E. hierrense</i> Webb ex Bolle	160.0	i	w	EU048848	DQ315581	_	EU433599	EU433614
D	E. horridum Batt.	83.0	n	h	L43228	_	—	L43226	L43227
А	E. humile Desf.	21.0	n	h	AF284109	-	—	AF284105	AF284099
E	<i>E. hypertropicum</i> Webb	100.0	i	w	EU048858	DQ315592	_	EU433609	EU433624
D	<i>E. italicum</i> L.	59.5	n	h	L43236	_	EU599874	EU600051	EU599963
E	<i>E. leucophaeum</i> Webb ex Spr. & Hutch	150.0	i	W	L43240	DQ315588	EU599865	EU600041	EU599953
D	E. lusitanicum L.	87.0	n	h	EU048847	_	_	EU433598	EU433613
E	E. nervosum Dryand.	130.0	i	w	EU048855	DQ315574	_	EU433606	EU433621
E	<i>E. onosmifolium</i> Webb & Berthel.	120.0	i	w	L43260	DQ315572	_	L43258	L43259
А	<i>E. parviflorum</i> Moench	25.0	n	h	L43264	_	_	L43262	L43263
E	<i>E. pininana</i> Webb & Berthel.	78.5	i	w	L43268	DQ315586	_	L43266	L43267
E	<i>E. pitardii</i> A. Chev	25.0	i	h	L43322	DQ315569	_	L43320	L43321
D	E. plantagineum L.	66.0	n	h	L43272	-	EU599872	EU600049	EU599960
D	<i>E. pycnanthum</i> Pomel	21.0	n	h	AF284108	_	_	AF284104	AF284101
D	E. rosulatum Lange	78.0	n	h	L43276	-	-	L43274	L43275
В	<i>E. russicum</i> J.F. Gmel.	82.5	n	h	L43280	-	_	L33356	L43279

		Plant	Distri-	Life	ife Molecular marker				
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
Α	E. sabulicola Pomel	37.5	n	h	L43288	DQ315570	_	L43286	L43287
Е	E. simplex DC	215.0	i	w	EU048851	DQ315584	HM849965	EU433602	EU433617
Е	E. stenosiphon Webb	100.0	i	w	EU048859	DQ315591	_	EU433611	EU433627
Е	E. strictum L.f.	130.0	i	w	L43292	DQ315590	_	L43290	L43291
E	E. sventenii Bramw.	145.0	i	w		DQ315579	_	_	_
А	<i>E. tenue</i> Lam.	83.0	n	h	AF284106	DQ315571	_	AF284102	AF284098
E	E. triste Svent.	60.0	i	h	L43324	DQ315576	_	_	L43323
D	E tuberculatum	95.0	n	h	L43300	_	_	L43298	L43299
U	Hoffmanns. & Link	55.0							
A	<i>E. vilmorinianum</i> Sauvage & Vindt	83.0	n	h	AF284107	_	_	AF284103	AF284100
Е	E. virescens Bolle	165.0	i	w	EU048850	DQ315583	EU599869	EU433601	EU433616
E	<i>E. vulcanorum</i> A. Chev	150.0	i	w	EU048857	DQ315589	_	EU433608	EU433623
D	E. vulgare L.	75.0	n	h	AY092900	_	KF158087	L33362	FJ789880
E	E. webbii Coyncii	170.0	i	w	EU048854	DQ315580	_	EU433605	EU433620
E	<i>E. wildpretii</i> H.Pearson ex Hook.f.	250.0	i	w	KF287973	DQ315585	EU599863	EU600039	EU599951
В	<i>Pontechium maculatum</i> (L.) Böhle & Hilger	82.5	n	h	EU919608	_	_	KF288055	_
Hyperi	cum								
I	<i>H. aciculare</i> Kunth	115.0	i	w					
Н	<i>H. acostanum</i> N.Robson	45.0	i	w					
I	H. adpressum W.P.C.Barton	60.0	n	h					
I	H. andinum Gleason	30.0	i	w					
В	<i>H. apocynifolium</i> Small	55.0	n	w					
Н	H. arbuscula Stanley & Steyerm.	35.0	i	w					
D	<i>H. boreale</i> (Britton) Bickn.	37.5	n	h					
В	H. brachyphyllum (Spach) Steud.	75.0	n	w					
С	H. brasiliense Choisy	65.0	n	h					
Н	H. brevistylum Choisy	11.5	i	h					
I	H. bryoides Gleason	12.0	i	w					
В	H. buckleyi M.A.Curtis	25.0	n	w					
I	<i>H. callacallanum</i> N.Robson	35.0	i	w					
C	H. campestre Cham. & Schltdl.	125.0	n	h					
D	H. canadense L.	31.5	n	h					
I	H. cardonae Cuatrec.	60.0	i	w					
I	H. carinosum R.Keller	155.0	i	w					
В	H. chapmanii	190.0	n	w					
-	W.P.Adams								
В	H. cistifolium Lam.	90.0	n	w					
С	H. connatum Lam.	61.5	n	h					
I	<i>H. costaricense</i> N.Robson	55.0	i	w					

		Plant	Distri-	Life	Life Molecular marker				
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
В	H. crux_andreae (L.)	55.0	n	W					
	Crantz								
I	H. cuatrecasii	160.0	i	w					
	Gleason								
I	H. cymobrathys	/5.0	I	W					
	N.Robson	25.0							
י ר	H. decalification Turcz.	35.0	-	vv					
В	H. densifiorum Pursh	120.0	n	w					
F	H. dichotomum Lam.	13.0	n	h					
В	<i>H. dolabriforme</i> Vent.	32.5	n	w					
F	H. drummondii (Grev. & Hook.) Torr. & A.Grav	45.0	n	h					
В	H. fasciculatum Lam.	150.0	n	w					
в	H. frondosum Michx.	153.0	n	w					
B	H galioides Lam	100.0	n	w					
	H. garciae Diorco	75.0	;						
י ר	H. gartigenides (L.)	75.0 22.5	1	w					
E	H. gentianolaes (L.) Britton, Sterns & Poggenh	33.5	n	n					
Ι	H. gladiatum N.Robson	42.5	i	w					
Ι	<i>H. gleasonii</i> N.Robson	82.5	i	w					
D	<i>H. globuliferum</i> R.Keller	19.5	n	h					
Н	H. gnidioides Seem.	79.5	i	w					
I	H. goyanesii Cuatrec.	200.0	i	w					
D	<i>H. gramineum</i> G.Forst.	61.0	n	h					
I	H. harlingii N.Robson	255.0	i	w					
I	H. hartwegii Benth.	60.0	i	w					
I	H. horizontale	50.0	i	w					
Ι	H. humboldtianum Steud.	42.5	i	w					
В	<i>H. hypericoides</i> (L.) Crantz	65.0	n	w					
Ι	<i>H. irazuense</i> Kunze ex N.Robson	170.0	i	w					
D	<i>H. japonicum</i> Thunb.	26.0	n	h					
I	<i>H. juniperinum</i> Kunth	135.0	i	w					
В	H. kalmianum L.	40.0	n	w					
D	<i>H. lalandii</i> Choisv	29.5	n	h					
I	H. lancifolium	85.0	i	w					
I	H. lancioides subsp. congestiflorum	55.0	i	w					
I	H. laricifolium Juss.	315.0	i	w					
C	H. linoides A.StHil	65.0	n	h					
В	H. lissophloeus	240.0	n	w					
I	W.P.Adams <i>H. Ilanganaticum</i> N. Pobson	120.0	i	w					

		Plant	Distri-	Life	e Molecular marker					
Clade	Taxon	height	bution	history	ITS	D6	DES	rbcL	trnL	trnLF
В	H. lloydii (Svenson) W.P.Adams	30.0	n	w						
В	H. lobocarpum Gatt.	120.0	n	w						
Н	<i>H. loxense</i> subsp. <i>loxense</i> Benth.	60.0	i	w						
I	<i>H. lycopodioides</i> Triana & Planch.	200.0	i	w						
I	H. magniflorum Cuatrec.	175.0	i	w						
I	<i>H. maguirei</i> N.Robson	65.0	i	w						
D	<i>H. majus</i> (A.Gray) Britton	32.5	n	h						
I	H. marahuacanum subsp. marahuacanum N.Robson	90.0	i	W						
I	H. mexicanum L.	82.5	i	w						
В	H. microsepalum (Torr. & A.Gray) A.Gray ex S.Watson	42.5	n	w						
D	H. mutilum L.	37.5	n	h						
I	H. myricariifolium Hieron.	200.0	i	w						
В	H. myrtifolium Lam.	65.0	n	w						
В	H. nitidum subsp. exile Lam.	170.0	n	w						
В	H. nudiflorum Michx.	125.0	n	w						
I	<i>H. parallelum</i> N.Robson	35.0	i	w						
Ι	<i>H. phellos</i> subsp. <i>phellos</i> Gleason	215.0	i	w						
Н	H. philonotis Schltdl. & Cham.	33.0	i	w						
I	H. pimeleoides Planch. & Linden ex Triana & Planch.	95.0	i	W						
С	<i>H. polyanthemum</i> Klotzsch ex Reichardt	25.0	n	w						
Н	<i>H. pratense</i> Schltdl. & Cham.	45.0	i	h						
В	H. prolificum L.	112.5	n	w						
I	<i>H. prostratum</i> Cuatrec.	20.0	i	w						
Н	H. quitense R.Keller	65.0	i	w						
С	H. rigidum subsp. rigidum A.StHil.	125.0	n	w						
I	H. ruscoides Cuatrec.	80.0	i	w						
I	<i>H. sabiniforme</i> Trevir.	40.0	i	w						
D	H. scioanum Chiov.	20.0	n	h						
Ι	<i>H. selaginella</i> N.Robson	15.0	i	w						
Н	H. silenoides Juss.	35.0	i	h						
В	H. sphaerocarpum Michx.	40.0	n	w						

		Plant	Distri-	Life	e Molecular marker				
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
I	H. sprucei N.Robson	110.0	i	w					
I	<i>H. strictum</i> Kunth	60.0	i	w					
I	H. struthiolifolium	50.0	i	w					
	Juss.								
В	<i>H. suffruticosum</i> W.P.Adams	10.0	n	w					
В	<i>H. tenuifolium</i> Pursh	30.0	n	w					
С	H. ternum A.StHil.	45.0	n	w					
G	<i>H. terrae-firmae</i> Sprague & Riley	150.0	i	w					
в	H tetranetalum Lam	60.0	n	14/					
	H totractichum	50.0 52 5	;						
	Cuatrec.	52.5							
Н	H. thesilfolium Kunth	36.0	i	h					
I	H. thuyoides Kunth	200.0	i	w					
I	<i>H. valleanum</i> N.Robson	100.0	i	w					
I	<i>H. woodianum</i> N.Robson	150.0	i	w					
A	<i>H. fraseri</i> (Spach) Gleason	45.0	n	h					
A	<i>H. fauriei</i> (Blume) Makino	50.0	n	h					
А	H. virginicum Raf.	45.0	n	h					
А	<i>H. walteri</i> (J.F.Gmel.)	60.0	n	h					
	Gleason								
Lupinus	5								
Р	L. albicaulis Douglas	75.0	i	w					
Р	L. albifrons Benth.	110.0	i	w					
Р	<i>L. andersonii</i> S.Watson	57.0	i	w					
Р	L. arboreus Sims	160.0	i	w					
Q	L. arcticus S.Watson	30.0	i	w					
P	L. araenteus Pursh	42.0	i	w					
K	<i>L. arizonicus</i> (S.Watson) S.Watson	30.0	n	h					
S	L. arvensis Benth.	40.0	i	h					
R	L. aschenbornii	40.0	i	w					
ç	I hallianus (D Sm	160.0	i	w					
с С	L banaii Rushu	<u></u>		 h					
с У	L benthamii A Uallar	45 O	'n	h					
N O		45.0		11 b					
U	L. DICOIOF LINGI.	25.0	n	n					
5	L. bogotensis Benth.	170.0	I	W					
I	<i>L. brevicaulis</i> S.Watson	5.0	n	h					
Р	L. breweri A.Gray	10.0	i	w					
Р	L. cervinus Kellogg	20.0	i	w					
S	L. chachas C.P.Sm.	65.0	i	w					
Р	<i>L. chamissonis</i> Eschsch.	125.0	i	w					
S	L. chrysanthus Ulbr.	60.0	i	w					
J	L. citrinus Kellogg	35.0	n	h					
к	L. concinnus J.Agardh	6.5	n	h					
Р	<i>L. duranii</i> Eastw.	8.5	i	w					

		Plant	Distri-	Life	Molecu	ular marker			
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
R	<i>L. elegans</i> Kunth	200.0	i	w					
S	L. ellsworthianus C P Sm	80.0	i	w					
Ρ	L. excubitus	110.0	i	w					
I	L. flavoculatus	6.0	n	h					
Б	A.Heller	50.0							
P	L. Jormosus Greene	50.0	1 :	w					
P	L. grayi S. watson	27.0	1	W					
N	C.P.Sm.	40.0	n	n					
J	<i>L. hirsutissimus</i> Benth.	60.0	n	h					
R	<i>L. huachucanus</i> M.E.Jones	65.0	i	W					
S	<i>L. huaronensis</i> J.F.Macbr.	80.0	i	w					
S	<i>L. huigrensis</i> Rose ex C.P.Sm.	35.0	i	h					
R	<i>L. jaimehintonianus</i> B.L. Turner	400.0	i	w					
Р	L. latifolius J.Agardh	67.0	i	w					
Р	L. lepidus Lindl.	30.0	i	w					
Р	L. leucophyllus Lindl.	57.0	i	w					
S	L. lindleyanus	18.0	i	h					
Р	<i>L. littoralis</i> Lindl.	20.0	i	w					
I	L. luteolus Kellogg	65.0	n	h					
S	L. mantaroensis	31.0	i	h					
R	L. mexicanus Lag.	55.0	i	w					
I	L. microcarpus Sims	18.0	n	h					
S	L. microphyllus Desr.	4.0	i	w					
S	L. misticola Ulbr.	25.0	i	w					
S	L. mollendoensis	15.0	i	h					
R	L. montanus Kunth	80.0	i	w					
S	L. mutabilis Sweet	150.0	i	h					
0	L. nanus Benth.	25.0	n	h					
Р	L. neomexicanus	70.0	i	w					
Р	L. nevadensis	27.0	i	w					
Q	L. nootkatensis Sims	60.0	i	w					
S	L. nubigenus Kunth	25.0	i	w					
Ī	L. odoratus A.Heller	22.0	n	h					
0	<i>L. pachylobus</i> Greene	27.0	n	h					
Q	L. perennis L.	50.0	n	w					
S	L. piurensis C.P.Sm.	55.0	i	h					
Р	L. polyphyllus Lindl.	67.0	i	w					
S	L. praestabilis	225.0	i	w					
S	L. prostratus	12.0	i	w					
S	L. pubescens Benth.	100.0	i	w					

		Plant	Distri-	Life	e Molecular marker					
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF	
S	L. pulvinaris Ulbr.	2.0	i	W						
S	L. purosericeus C.P. Sm	75.0	i	w						
S	<i>L. ramosissimus</i> Benth.	160.0	i	w						
Р	L. rivularis Lindl.	65.0	i	w						
S	L. sarmentosus Desr.	15.0	i	w						
S	<i>L. semperflorens</i> Benth.	550.0	i	w						
Р	L. sericeus Pursh	90.0	i	w						
I	L. shockleyi S.Watson	12.0	n	h						
Р	L. sierrae-blancae Wooton & Standl.	100.0	i	w						
S	<i>L. solanagrorum</i> C.P. Sm.	170.0	i	w						
К	L. sparsiflorus Benth.	27.0	n	h						
М	L. stiversii Kellogg	30.0	n	h						
S	L. subacaulis Griseb.	12.0	i	w						
L	L. succulentus K.Koch	45.0	n	h						
Р	L. sulphureus Hook.	60.0	i	w						
S	<i>L. tarapacensis</i> C.P.Sm.	85.0	i	w						
Р	<i>L. tegeticulatus</i> Eastw.	8.0	i	w						
S	L. tomentosus DC.	170.0	i	w						
S	L. tominensis Wedd.	80.0	i	w						
К	<i>L. truncatus</i> Hook. & Arn.	30.0	n	h						
I	L. uncialis S.Watson	1.5	n	h						
S	L. weberbaueri Ulbr.	160.0	i	w						
Silvers	words—Tarweeds (Mad	iinae)								
E	<i>Achyrachaena mollis</i> Schauer	33.0	n	h	AF229318					
E	Adenothamnus validus (Brandegee) D.D.Keck	17.5	n	W	M93787					
0	Anisocarpus madioides Nutt.	47.5	n	h	AF061914					
0	<i>A. scabridus</i> (Eastw.) B.G.Baldwin	30.0	n	h	M93799					
Р	Argyroxiphium caliginis C.N.Forbes	84.5	i (2)	w	M93788					
Р	A. grayanum (Hillebr.) O.Deg.	199.9	i (2)	w	AF061885					
Р	A. kauense (Rock & Neal) O.Deg. & I.Deg.	160.0	i (2)	w	AF061887					
Р	A. sandwicense DC.	300.1	i (2)	w	EU341969					
А	Blepharipappus scaber Hook.	12.5	n	h	AF229316					
Ι	<i>Blepharizonia laxa</i> Greene	95.0	n	h	AF283548					
Ι	<i>B. plumosa</i> (Kellogg) Greene	95.0	n	h	AF283551					
G	Calycadenia fremontii A.Gray	55.0	n	h	U04249					
G	<i>C. hooveri</i> G.D.Carr	35.0	n	h	U04251					

		Plant	Distri-	Life	ife Molecular marker				
lade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
G	C. mollis A.Gray	39.0	n	h	U04253				
G	C. multiglandulosa DC.	40.0	n	h	U04254				
G	<i>C. oppositifolia</i> (Greene) Greene	20.0	n	h	U04256				
G	C. pauciflora A.Gray	25.0	n	h	U04259				
G	<i>C. spicata</i> (Greene) Greene	40.0	n	h	U04260				
G	C. truncata DC.	70.0	n	h	U04262				
G	C. villosa DC.	27.5	n	h	U04263				
J	<i>Carlquistia muirii</i> (A.Gray) B.G.Baldwin	30.5	n	h	M93798				
Н	<i>Centromadia</i> <i>perennis</i> Greene	87.5	n	h	U04265				
Ν	<i>Deinandra arida</i> (D.D.Keck) B.G.Baldwin	50.0	n	h	EF059610				
Ν	<i>D. bacigalupii</i> B.G.Baldwin	25.0	n	h	EF059701				
Ν	D. clementina (Brandegee) B.G.Baldwin	55.0	i (1)	w	EF059624				
L	<i>D. conjugens</i> (D.D.Keck) B.G.Baldwin	30.0	n	h	EF059606				
Ν	<i>D. corymbosa</i> (DC.) B.G.Baldwin	53.0	n	h	EF059691				
L	<i>D. fasciculata</i> (DC.) Greene	52.0	n	h	EF059605				
Ν	<i>D. floribunda</i> (A.Gray) Davidson & Moxley	65.0	n	h	EF059608				
Ν	D. frutescens (A.Gray) B.G.Baldwin	40.0	i (1)	W	EF059660				
Ν	<i>D. greeneana</i> (Rose) B.G.Baldwin	75.0	i (1)	w	EF059644				
Ν	<i>D. halliana</i> (D.D.Keck) B.G.Baldwin	67.5	n	h	EF059697				
Ν	D. increscens (H.M.Hall ex D.D.Keck) B.G.Baldwin	52.0	n	h	EF059688				
Ν	<i>D. kellogii</i> Greene	37.5	n	h	EF059692				
Ν	<i>D. lobbii</i> (Greene) Greene	37.5	n	h	EF059700				
Ν	<i>D. martirensis</i> (D.D.Keck) B.G.Baldwin	80.0	n	w	EF059643				
Ν	<i>D. minthornii</i> (Jeps.) B.G.Baldwin	57.5	n	w	EF059612				
N	<i>D. mohavensis</i> (D.D.Keck) B.G.Baldwin	55.0	n	h	EF059685				
Ν	<i>D. pallida</i> (D.D.Keck) B.G.Baldwin	54.5	n	h	EF059694				

		Plant	Distri-	Life Molecular marker					
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
N	<i>D. palmeri</i> (Rose) B.G.Baldwin	10.0	i (1)	W	EF059651				
Ν	D. paniculata (A.Gray) Davidson & Moxley	45.0	n	h	EF059687				
Ν	D. pentactis (D.D.Keck) B.G. Baldwin	39.5	n	h	EF059699				
Ν	<i>D. streetsii</i> (A.Gray) B.G.Baldwin	20.0	i (1)	w	EF059625				
Q	<i>Dubautia arborea</i> (A.Gray) D.D.Keck	600.0	i (2)	w	EU341945				
Q	<i>D. ciliolata</i> (DC.) D.D.Keck	180.0	i (2)	w	AF061892				
Q	D. herbstobatae G.D.Carr	50.0	i (2)	w	AF061901				
R	<i>D. imbricata</i> H.St.John & G.D.Carr	249.9	i (2)	W	AF061912				
R	D. laevigata A.Gray	249.9	i (2)	w	AF061898				
R	D. laxa Hook. & Arn.	500.2	i (2)	w	AF061893				
Q	<i>D. linearis</i> (Gaudich.) D.D.Keck	300.1	i (2)	w	AF061910				
Q	<i>D. menziesii</i> (A.Gray) D.D.Keck	249.9	i (2)	w	EU341949				
R	D. microcephala Skottsb.	399.8	i (2)	w	AF061902				
R	D. paleata A.Gray	140.1	i (2)	w	AF061888				
R	D. pauciflorula H.St.John & G.D.Carr	300.1	i (2)	W	AF061896				
R	D. plantaginea Gaudich.	699.9	i (2)	w	AF061889				
Q	D. platyphylla (A.Gray) D.D.Keck	350.0	i (2)	W	AF061908				
R	D. raillardioides Hillebr.	300.1	i (2)	w	AF061897				
Q	D. reticulata (Sherff) D.D.Keck	800.3	i (2)	w	AF061895				
ų o	D. Scabra (DC.) D.D.Keck	25.0	i (2)	w	AF061906				
Q	D. Sherjjiunu rosberg	30.0	i (2)	w	EU341967				
	<i>waianapanapaensis</i> G.D.Carr								
F	Hemizonella minima (A.Gray) A.Gray	10.5	n	h	AF229317				
F	H. congesta DC.	42.5	n	h	AF283544				
Μ	<i>Holocarpha heermannii</i> (Greene) D.D.Keck	65.0	n	h	EF059603				
Μ	<i>H. virgata</i> (A.Gray) D.D.Keck	70.0	n	h	AF229321				
F	<i>Holozonia filipes</i> (Hook. & Arn.) Greene	90.0	n	h	AF229312				
F	<i>Kyhosia bolanderi</i> (A.Gray) B.G.Baldwin	85.0	n	h	M93794				

		Plant	Distri-	Life	fe Molecular marker				
Clade	Taxon	height	bution	history	ITS	D6DES	rbcL	trnL	trnLF
В	Lagophylla glandulosa A.Gray	55.0	n	h	DQ188073				
В	<i>L. minor</i> (D.D.Keck) D.D.Keck	19.0	n	h	AF229311				
В	L. ramosissima Nutt.	55.0	n	h	AF229310				
С	<i>Layia carnosa</i> (Nutt.) Torr. & A.Gray	10.0	n	h	DQ188045				
С	L. chrysanthemoides (DC. ex DC.) A.Gray	28.5	n	h	DQ188077				
С	L. discoidea D.D.Keck	11.5	n	h	DQ188068				
С	L. gaillardioides (Hook. & Arn.) DC.	33.0	n	h	DQ188044				
С	<i>L. glandulosa</i> (Hook.) Hook. & Arn.	31.5	n	h	DQ188063				
С	<i>L. heterotricha</i> (DC.) Hook. & Arn.	51.5	n	h	DQ188075				
С	<i>L. munzii</i> D.D.Keck	28.0	n	h	AF229314				
С	<i>L. pentachaeta</i> A.Gray	52.5	n	h	DQ188046				
C	<i>L. septentrionalis</i> D.D.Keck	20.5	n	h	DQ188080				
К	<i>Madia elegans</i> D.Don ex Lindl.	128.0	n	h	AF413612				
К	<i>M. sativa</i> Molina	67.5	n	h	EU853464				
F	<i>Osmadenia tenella</i> Nutt.	22.5	n	h	U04266				
D	Raillardella argentea (A.Gray) A.Gray	8.0	n	h	AF229309				
D	R. pringlei Greene	37.5	n	h	M93797				
R	Wilkesia gymnoxiphium A.Gray	300.1	i (2)	w	M93800				
R	<i>W. hobdyi</i> H.St.John	70.0	i (2)	w	AF061882				
Distribu Life hist Plant he	tion: n, non-island (mainlan ory: w, woody (= perennial :ight, mean plant height in o	nd or lowland in <i>Lupinus</i>); cm.	d); i, island; i h, herbaceo	(1), Califor us (= annua	nia islands; i (2 l in <i>Lupinus</i>);	?), Hawaiian	archipelago;		

	Model					_			
				Island	Clades				
Clade	No	Non-island	(Sky-) Island	2	linked	MlnL	BF	р	# samples
Echium									
	M1	Yule	Yule	—	No	-27.64	0.00	0.471	990
	M3	Yule	birth-death	_	No	-28.46	1.64	0.208	437
	M5	birth-death	Yule	—	No	-29.03	2.77	0.118	247
	M7	birth-death	birth-death	—	No	-29.50	3.71	0.074	155
	M4	Yule	birth-death	—	Yes	-29.94	4.60	0.047	99
	M8	birth-death	birth-death	—	Yes	-29.97	4.65	0.046	97
	M2	Yule	Yule	—	Yes	-30.27	5.26	0.034	72
	M6	birth-death	Yule	_	Yes	-32.57	9.86	0.003	7
Hyperic	um								
	M5	birth-death	Yule	—	No	-151.29	0.00	0.823	990
	M7	birth-death	birth-death	—	No	-152.86	3.13	0.172	207
	M1	Yule	Yule	—	No	-156.61	10.63	0.004	5
	M3	Yule	birth-death	—	No	-157.82	13.05	0.001	1
	M8	birth-death	birth-death	—	Yes	-163.39	24.19	0.000	0
	M2	Yule	Yule	—	Yes	-177.50	52.42	0.000	0
	M4	Yule	birth-death	—	Yes	-177.56	52.53	0.000	0
	M6	birth-death	Yule	_	Yes	-179.71	56.82	0.000	0
Lupinus									
	M1	Yule	Yule	—	No	-120.77	0.00	0.523	990
	M3	Yule	birth-death	—	No	-121.30	1.06	0.308	583
	M5	birth-death	Yule	—	No	-122.33	3.11	0.111	209
	M7	birth-death	birth-death	—	No	-122.96	4.37	0.059	112
	M8	birth-death	birth-death	—	Yes	-147.89	54.23	0.000	0
	M4	Yule	birth-death	—	Yes	-155.41	69.27	0.000	0
	M2	Yule	Yule	—	Yes	-155.51	69.48	0.000	0
	M6	birth-death	Yule	—	Yes	-158.57	75.59	0.000	0
Silversv	vords & 1	Farweeds (Mad	liinae)						
	M28	Yule	birth-death	Yule	Hwi. unl.	-181.39	0.00	0.148	990
	M22	Yule	Yule	b-d	Isls. link.	-181.41	0.03	0.146	974
	M17	Yule	birth-death	b-d	No	-181.55	0.33	0.126	841
	M2	Yule	Yule	Yule	Isls. link.	-181.57	0.36	0.124	825
	M14	birth-death	birth-death	b-d	Isls. link.	-181.90	1.02	0.089	595
	M26	Yule	birth-death	Yule	Isls. link.	-181.98	1.17	0.083	551
	M27	Yule	birth-death	Yule	Yes	-182.08	1.38	0.074	496
	M20	Yule	birth-death	b-d	Yes	-182.37	1.96	0.056	372
	M24	Yule	Yule	b-d	Yes	-182.87	2.96	0.034	225
	M5	birth-death	Yule	Yule	No	-182.92	3.07	0.032	213
	M23	Yule	Yule	b-d	Hwi. unl.	-183.08	3.38	0.027	183
	M25	Yule	birth-death	Yule	No	-183.52	4.27	0.018	117
	M8	birth-death	Yule	Yule	Yes	-183.94	5.10	0.012	77
	M1	Yule	Yule	Yule	No	-184.20	5.62	0.009	60
	M11	birth-death	birth-death	Yule	Hwi. unl.	-184.27	5.76	0.008	55
	M16	birth-death	birth-death	b-d	Yes	-184.75	6.73	0.005	34
	M19	Yule	birth-death	b-d	Hwi. unl.	-184.93	7.09	0.004	29
	M13	birth-death	birth-death	b-d	No	-185.44	8.09	0.003	17
	M4	Yule	Yule	Yule	Yes	-185.76	8.74	0.002	13
	M7	birth-death	Yule	Yule	Hwi. unl.	-186.76	10.74	0.001	5
	M10	birth-death	birth-death	Yule	Isls. link.	-187.19	11.61	0.000	3
	M18	Yule	birth-death	b-d	Isls. link.	-188.15	13.53	0.000	1
	M12	birth-death	birth-death	Yule	Yes	-188.26	13.75	0.000	1

Table S2 Comparative diversification rate analysis detailing model specification and model fit used inBayesian model averaging (BayesRate).

	Iviodei								
				Island	Clades				
Clade	No	Non-island	(Sky-) Island	2	linked	MInL	BF	р	# samples
	M15	birth-death	birth-death	b-d	Hwi. unl.	-188.27	13.75	0.000	1
	M3	Yule	Yule	Yule	Hwi. unl.	-188.34	13.90	0.000	1
	M21	Yule	Yule	b-d	No	-188.39	14.00	0.000	1
	M9	birth-death	birth-death	Yule	No	-190.71	18.63	0.000	0
	M6	birth-death	Yule	Yule	Isls. link.	-191.08	19.38	0.000	0

MlnL, natural log marginal likelihood, BF, Bayes factor; *p*, relative probability; # samples, number of samples included in the combined posterior.

Madiinae: Island, Californian Islands; Island 2, Hawaiian Islands.

Yule, pure birth model; b-d, birth-death model; Hwi. unl., Hawaiian silverswords clade not linked, i.e. non-island and Californian islands clade linked; Isls. link., both island clades linked among each other and unlinked with non-island species.

 Table S3 Sampling fractions used to account for incomplete species sampling in the exploratory diversification rate heterogeneity analysis (BAMM).

Clade	Echium	Hypericum	Lupinus	Silverswords-Tarweeds		
А	1.00	0.67	—	1.00		
В	0.60	0.90	—	0.75		
С	1.00	0.35	—	0.64		
D	0.65	0.36	—	0.67		
Е	1.00	1.00	—	1.00		
F	—	0.33	—	1.00		
G	—	0.50	—	0.90		
Н	—	0.37	—	0.25		
I	—	0.63	0.70	1.00		
J	—	_	1.00	1.00		
К	—	_	0.83	0.20		
L	—	—	1.00	1.00		
Μ	—	_	1.00	0.50		
Ν	—	—	1.00	1.00		
0	—	_	0.50	1.00		
Р	—	—	0.41	0.80		
Q	—	_	0.60	0.86		
R	_	_	0.13	1.00		
S	_	_	0.38	_		

Lupinus clade names follow Drummond et al. (2012b) with clades A–H pruned in our tree. For clade assignment see Figs. S1–S4.

See main article Table 1 for sampling fractions used in Bayesian model averaging (BayesRate).

						Akaike	Eigenvalues	Model
Clade	Model	df	InL	AICc	ΔΑΙϹϲ	weight	negative	failure
Echium								
	ουθ	4	-38.301	85.533	0	0.6111	0	0
	$OU\theta\sigma^2$	5	-37.856	87.141	1.609	0.2734	0	0
	0U1	3	-41.737	90.019	4.486	0.0649	0	0
	$BM\sigma^2$	4	-40.791	90.512	4.979	0.0507	0	0
	BM1	2	-55.846	115.959	30.426	1.5108e-07	0	0
	Ουθα	5	NA	NA	NA	NA	85%	100%
Hypericum								
	0U1	3	-109.096	224.432	0	0.3339	0	0
	ουθ	4	-108.294	224.992	0.56	0.2524	0	0
	Ουθσ²	5	-107.363	225.338	0.906	0.2123	0	0
	Ουθα	5	-107.416	225.444	1.011	0.2014	52%	90%
	$BM\sigma^2$	4	-128.922	266.248	41.816	2.7768e-10	0	0
	BM1	2	-135.665	275.449	51.017	2.7887e-12	0	0
Lupinus								
	ουθ	4	-118.864	246.234	0	0.5686	0	0
	Ουθσ²	5	-118.663	248.095	1.861	0.2242	0	0
	Ουθα	5	-118.759	248.288	2.054	0.2036	75%	99%
	0U1	3	-125.021	256.341	10.107	0.0036	0	0
	$BM\sigma^2$	4	-131.172	270.851	24.617	2.5658e-6	0	0
	BM1	2	-143.347	290.842	44.608	1.1704e-10	0	0
Silverswords—Tarweeds (Madiinae)								
	Ουθσ²	7	-89.499	194.415	0	0.7172	24%	0
	ουθ	5	-92.768	196.276	1.861	0.2828	99%	0
	0U1	3	-126.612	259.513	65.098	5.2452e-15	0	0
	$BM\sigma^2$	6	-130.446	273.943	79.528	3.8578e-18	0	0
	BM1	2	-176.163	356.469	162.054	4.6349e-36	0	0
	Ουθα	7	NA	NA	NA	NA	100%	100%

Table S4. Plant height: Continuous trait models of evolution ranked according to model fit per study group (OUwie).

df, degree of freedom; InL, natural log likelihood; AICc, sample size corrected Akaike information criterium; ΔAICc, difference in AICc to the best model tested; Eigenvalues negative' and 'Model failure', model performance indices (note that the results of the runs with either negative eigenvalues or failed models were excluded before model averaging).

Fig. S1. Ancestral state estimates in *Echium* of life history evolution (tip and node labels, obtained by stochastic character mapping (SCM) of life history strategy) overlaid on a stochastic mapping of occurrence (island / non-island, gradient on branches). The insert top left compares results of SCM (*make.simmap*) to ML (*ace*) estimates of life history. Clade names correspond to tables S1, S4.

Fig. S2. Ancestral state estimates in *Hypericum* of life history evolution (tip and node labels, obtained by stochastic character mapping (SCM) of life history strategy) overlaid on a stochastic mapping of occurrence (island / non-island, gradient on branches). The insert top left compares results of SCM (*make.simmap*) to ML (*ace*) estimates of life history. Clade names correspond to tables S1, S4.

Fig. S3. Ancestral state estimates in *Lupinus* of life history evolution (tip and node labels, obtained by stochastic character mapping (SCM) of life history strategy) overlaid on a stochastic mapping of occurrence (island / non-island, gradient on branches). The insert top left compares results of SCM (*make.simmap*) to ML (*ace*) estimates of life history. Clade names correspond to tables S1, S4.

Fig. S4. Ancestral state estimates in the Silverswords—Tarweeds of life history evolution (tip and node labels, obtained by stochastic character mapping (SCM) of life history strategy) overlaid on a stochastic mapping of occurrence (island / non-island, gradient on branches). The insert top left compares results of SCM (*make.simmap*) to ML (*ace*) estimates of life history. Clade names correspond to tables S1, S4.

Methods S1 Clade specific information, phylogenetic reconstructions and trait data

All data used in this study (DNA alignments, xml BEAST input files, phylogenetic trees, trait data tables) are available on Dryad (https://doi.org/10.5061/dryad.rt530k9).

Echium – The genus Echium L. comprises ca. 68 species native to North Africa, mainland Europe and the Macaronesian islands. Early phylogenetic work demonstrated the monophyly of the Macaronesian species and characterised this island radiation as a classical example of insular woodiness and disparification of insular growth forms (Böhle et al., 1996). More recently published phylogenies of *Echium* either contain too few non-island taxa (García-Maroto et al., 2009) or lack a timeline (Romeiras et al., 2011). In order to provide a time-calibrated comparative framework encompassing the island and mainland diversity for evolutionary analyses we generated a new timecalibrated phylogenetic tree for all major lineages of Boraginaceae with as complete sampling as possible of the genus *Echium*, using data for two chloroplast markers (rbcL and trnLF) and two nuclear markers (ITS and D6DES) downloaded from GenBank (GenBank accession numbers are provided in table S1). Sequences were aligned using MUSCLE v3.6 (Edgar, 2004) and alignments were visually crosschecked and ambiguous fragments were excluded using Geneious v6.0.5 (Kearse et al., 2011). To test on supported topological conflict between the individual gene trees phylogenies were inferred for each individual marker using RAxML v8 (Stamatakis, 2006) with a GTR + Γ substitution model and rapid bootstrapping with 100 iterations. Since no supported conflicts were present, we concatenated the alignments prior to estimating the topology and divergence times simultaneously using BEAST v1.8.2 (Drummond, AJ et al., 2012) under an uncorrelated lognormal relaxed-clock model, using the general time-reversible (GTR) substitution rate model and Гdistributed rates among sites with a proportion of invariant sites to describe the rate heterogeneity among sites, with a Yule model as tree prior. We used critically selected fossils for calibration: the genus Ehretia P.Browne has a good fossil record from the early Eocene to the Neogene and represents the earliest fossil record of Boraginaceae, therefore we used (1) this set of fossils to set a minimum age of 33.9 Myr (Chandler, 1962; Mai & Walther, 1991; Ozaki, 1991). Other fossils used were: (2) a fossil of Cryptantha Lehm. ex G.Don (Darnell & Thomasson, 2007), and (3) a fossil of Lithospermum L. (Gabel, 1987), both from the late Miocene Ash Hollow Formation in the Ogallala group from c. 10.3 to c. 13.6 Ma; (4) a fossil nutlet and pollen records of Tournefortia L. from the Oligocene (Dorofeev, 1963); and (5) a fossil of Cordia L. from the Eocene (Huzioka & Takahasi, 1970). The fossils were assigned to clades on the basis of their morphology and the respective nodes were constrained with uniform priors with the minimum age set by the age of the fossil, and the maximum age of 88 Myr. We ran four independent Markov Chain Monte Carlo (MCMC) runs of 50 imes10⁶ generations and checked for convergence between runs, and effective sample sizes of >200 for

all parameters in Tracer 1.5 (Rambaut & Drummond, 2007). We combined the four runs in LogCombiner after discarding the first 10% generations (burnin) in each run and we selected and annotated the Maximum Clade Credibility (MCC) tree using TreeAnnotator. The MCC tree was used in all subsequent comparative analyses after pruning the outgroup taxa.

In our time-calibrated phylogeny of *Echium* all Macaronesian taxa form a monophyletic group, concordant with the topologies of Böhle *et al.* (1996) and García-Maroto *et al.* (2009), with all three Macaronesian clades recovered by the latter also recovered in our own phylogeny (Fig. S1). Our crown age estimate for the Macaronesian clade is slightly younger, ca. 4.2 Ma vs 6.9 Ma, however, the age estimate recovered by García-Maroto *et al.* (2009) falls within our 95% HPD. Our phylogeny also recovers the Cape Verde Islands relationship of *E. stenosiphon* as sister to *E. hypertropicum* + *E. vulcanorum* as presented by Romeiras *et al.* (2011).

Trait measurements were obtained from the *Echium* account from Flora Iberica (Talavera *et al.*, 2012) and Bramwell's (1972) account of Macaronesian *Echium*.

Hypericum – While the main centre of species diversity for *Hypericum* L. with around 330 species is in the Old World (Nürk *et al.*, 2015), ca. 170 species occur in the Americas, thereof 120 in Latin America, of which ca. 70 are Andean páramo endemics (NB ca. 99 species in the 'Andean radiation' [clades G, H, I; Fig. S2] due to 'secondary out-of-páramo' dispersals; Nürk *et al.*, 2018), with the 'sky island' here defined as the high elevation páramo ecosystem above the treeline (Nürk *et al.*, 2018). To ensure as complete sampling as possible for the páramo endemics and related taxa, we used a previously published time-calibrated phylogeny, which has extensive sampling of the New World lineages (Nürk *et al.*, 2018). Previous work has demonstrated a close association between arborescence and tropical montane occurrences in African mountains and the Andes (Nürk *et al.*, 2013a) and elevated species richness associated with the very recent Pliocene / Quaternary radiation in the Andes, a radiation encompassing a disparate array of growth forms typical of tropical alpine sky island plant groups (Nürk *et al.*, 2013b).

Trait measurements were obtained from cladistic studies (Nürk & Blattner, 2010), herbarium specimen data, and the monograph of *Hypericum* (Robson, 1987; Robson, 1990; Robson, 1996; Robson, 2012).

Lupinus – The legume genus *Lupinus* L. comprises ca. 290 species, of which ca. 190 occur across Mexico to South America, thereof ca. 85 across the Andes mountain range (Hughes & Eastwood, 2006; Drummond, CS *et al.*, 2012; Nevado *et al.*, 2016). We used the best currently available time-calibrated phylogeny (Drummond, CS *et al.*, 2012), pruned to the robustly supported large western New World clade containing c. 220 species found in western North and South America

20

(i.e. clades I to S of Drummond et al., 2012). Previous work demonstrated significant associations between shifts from annual to perennial life histories, lowland to montane habitats and accelerated rates of species diversification nested within this clade, with these three coincident shifts subtending a large western New World montane 'super-radiation' within which is nested the Andean radiation (Drummond, CS *et al.*, 2012). Like the Andean radiation of *Hypericum*, Andean *Lupinus* also includes diverse growth forms (Hughes & Eastwood, 2006; Hughes & Atchison, 2015). For *Lupinus* the western New World 'super-radiation' *sensu* Drummond, CS *et al.* (2012) and Hughes and Atchison (2015) is defined as the montane sky island clade and the set of lowland western North American annual species that subtend the montane radiations are the non-island relatives.

Trait measurements were obtained from field observations, herbarium specimen data and literature (Gladstones, 1974; McVaugh & Anderson, 1987; Barneby, 1989; Baldwin *et al.*, 2012).

Silverswords-Tarweeds - The subtribe Madiinae Benth. & Hook.f. (Asteraceae) comprises 123 species distributed across 24 genera (Carlquist et al., 2003). The continental species are commonly referred to as 'tarweeds' with the Hawaiian species known as 'silverswords' alliance. The 33 Hawaiian species form a clade comprising three genera; Argyroxiphium DC. (5 spp.), Dubautia Gaudich. (26 spp.), and Wilkesia A.Gray (2 spp.) (Baldwin et al., 1991; Baldwin & Sanderson, 1998; Baldwin & Wessa, 2000). Like Echium, the Hawaiian silversword radiation shows evidence of insular woodiness and disparification of insular growth forms including shrubs, treelets, lianas, acaulescent and candelabra rosettes (Baldwin, 1997) with a smaller radiation with parallel evolution of insular woodiness on the Californian islands in the genus Deinandra Greene (Baldwin, 2007), while the vast majority of the continental tarweeds are ephemeral low elevation herbs occupying seasonally dry mainland habitats. Although a suite of phylogenies that sample members of the Madiinae have been published (Baldwin et al., 1991; Baldwin, 1997; Baldwin et al., 1998; Baldwin & Sanderson, 1998; Barrier et al., 1999; Baldwin & Wessa, 2000; Baldwin, 2007) none included the comprehensive sampling of both mainland and island species needed for comparative analysis of species and trait diversification rates (but see: Landis et al., 2018). We generated a time-calibrated phylogenetic tree for the Silverswords–Tarweeds using the ITS marker for as many members of Madiinae with available data in GenBank (GenBank accession numbers are provided in table S1). Sequences were aligned using MUSCLE v3.6 (Edgar, 2004). Alignments were visually crosschecked and ambiguous fragments were excluded using Geneious v.6.0.5. We simultaneously estimated the topology and divergence times using BEAST v1.8 under an uncorrelated lognormal relaxed-clock model, using the general time-reversible (GTR) substitution rate model and Γ-distributed rates among sites with a proportion of invariant sites to describe the rate heterogeneity among sites. In the absence of available fossil calibrations, we used a calibration constraint of 15 Ma for the most recent common

21

ancestor of the silversword alliance and its Californian sister group, as justified by Baldwin and Sanderson (1998) and later used by Baldwin (2007). While this approach may not provide accurate estimates of absolute divergence times (but cf. Landis *et al.*, 2018), this will not affect our downstream rates analyses as our inferences are based on relative divergence times. We ran four independent MCMC runs of 50×10^6 generations and checked for convergence between runs, and effective sample sizes of >200 for all parameters in Tracer 1.5. We combined the four runs in LogCombiner after discarding the first 10% generations (burnin) in each run before annotating the MCC tree using TreeAnnotator. The MCC tree was used in all subsequent comparative analyses after pruning all subspecies.

Our time-calibrated phylogeny of the Madiinae is concordant with previous phylogenetic hypotheses in both topology and age estimates, with a crown age estimate for the silverswords of ca. 3.6 Ma and for the tarweeds from CA silands of ca. 1.2 Ma (table 1, Fig. S4). We recovered the Hawaiian silversword taxa as monophyletic matching the phylogenies of Baldwin and Sanderson (1998) and Barrier *et al.* (1999) and also recovered the CA island clade (Fig. S4) presented by Baldwin (2007). Our finding that the two species of *Anisocarpus* Nutt. are sister to the silversword clade is concordant with the phylogeny of Baldwin and Wessa (2000) and Landis *et al.* (2018). We find that within the silversword clade *Wilkesia* is nested within *Dubautia*, which together are sister to *Argyroxiphium*, matching the previously most comprehensively sampled topology for the silverswords of Baldwin and Sanderson (1998), but differs from the groupings recently recovered by Landis *et al.* (2018), in which *Argyroxiphium* is nested within *Dubautia*.

Trait data were obtained from the Monograph of the Hawaiian Madiinae (Carr, 1985), the Jepson manual (Baldwin *et al.*, 2012), the manual of the flowering plants of Hawai'i, (Wagner *et al.*, 1999) and the monograph of tarweeds and silverswords (Carlquist *et al.*, 2003).

Notes S1 *Hypericum* traits: We are relaying on mean plant height as proxy for growth form evolution, which might introduce bias into comparisons of overall disparity between *Hypericum* clades because not all species descriptions contain measures of min and max plant height (Robson, 1987; 1996). For example, the North American non-island species *H. chapmanii* W.P.Adams is descried as "up to 4 m tall" in Robson (1996: p 112), whereas the Andean sky island species *H. laricifolium* Juss. is described as "(0.1–) 0.3–3 (–6) m tall" (Robson, 1987: p 47). For these two species (and *H. densiflorum* Pursh, *H. frondosum* Michx., *H irazuense* Kunze ex N.Robson, *H lycopodioides* Triana & Planch.) we evaluated additional herbarium specimens and calculated as most likely actual mean plant height 190 cm for *H. chapmanii*, and 315 cm for *H. laricifolium* that, as

22

adult plant, generally grows up to 3–4 (–6) m height (NM Nürk, pers. observations). Nevertheless, overall disparity of growth form might be overestimated for the non-island species and potentially underestimated for the sky island species of *Hypericum*.

References SI

- Baldwin BG 1997. Adaptive radiation of the Hawaiian silversword alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations. In: Givnish TJ, Sytsma KJ eds. *Molecular evolution and adaptive radiation*. London: Cambridge University Press, UK, 103–128.
- Baldwin BG. 2007. Adaptive radiation of shrubby tarweeds (*Deinandra*) in the California Islands parallels diversification of the Hawaiian silversword alliance (Compositae-Madiinae). *American Journal of Botany* 94(2): 237–248.
- Baldwin BG, Crawford DJ, Francisco-Ortega J, Kim SC, Sang T, Stuessy T 1998. Molecular phylogenetic insights on the origin and evolution of oceanic island plants. In: Soltis D, Soltis P, Doyle JJ eds. *Molecular Systematics of Plants. II. DNA Sequencing*. Boston, USA: Kluwer Academic Publishers, 410–441.
- Baldwin BG, Goldman DH, Vorobik LA. 2012. *The Jepson manual: vascular plants of California*. Berkeley, Calif.: University of California Press.
- Baldwin BG, Kyhos DW, Dvorak J, Carr GD. 1991. Chloroplast DNA evidence for a North-American origin of the Hawaiian silversword alliance (Asteraceae). *Proceedings of the National Academy of Sciences of the United States of America* 88(5): 1840–1843.
- Baldwin BG, Sanderson MJ. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proceedings of the National Academy of Sciences of the United States of America 95(16): 9402–9406.
- Baldwin BG, Wessa BL. 2000. Origin and relationships of the tarweed-silversword lineage (Compositae-Madiinae). *American Journal of Botany* 87(12): 1890–1908.
- **Barneby RC. 1989.** *Intermountain flora: vascular plants of the intermountain West, U.S.A. III, part B: Fabales.* New York: New York Botanical Garden.
- Barrier M, Baldwin BG, Robichaux RH, Purugganan MD. 1999. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. *Molecular Biology and Evolution* 16(8): 1105–1113.
- Böhle UR, Hilger HH, Martin WF. 1996. Island colonization and evolution of the insular woody habit in *Echium* L. (Boraginaceae). *Proceedings of the National Academy of Sciences of the United States of America* **93**(21): 11740–11745.
- Bramwell D. 1972. A revision of the genus Echium in Macaronesia. Lagascalia 2(1): 37-115.
- Carlquist SJ, Baldwin BG, Carr GD. 2003. Tarweeds & silverswords: evolution of the Madiinae (Asteraceae). St. Louis, U.S.A.: Missouri Botanical Garden Press.
- Carr GD. 1985. Monograph of the Hawaiian Madiinae (Asteraceae) : *Argyroxiphium*, *Dubautia*, and *Wilkesia*. *Allertonia* 4(1): 1–123.
- Chandler MEJ. 1962. The lower Tertiary floras of Southern England. II, Flora of the Pipe-clay Series of Dorset (Lower Bagshot). London, UK: British Museum Natural History.
- Darnell MK, Thomasson JR. 2007. First equid remains from the late Miocene *Prolithospermum johnstonii-Nassella pohlii* assemblage zone stratotype locality, Ellis County, Kansas. *Transactions of the Kansas Academy of Science* 110(1 & 2): 10–15.
- **Dorofeev PI. 1963.** Tretichnye flory Zapadnoi Sibiri [The tertiary floras of western Siberia]. Moskva: Izd-vo Akademii nauk SSSR.
- Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution* 29(8): 1969–1973.
- Drummond CS, Eastwood RJ, Miotto STS, Hughes CE. 2012. Multiple continental radiations and correlates of diversification in *Lupinus* (Leguminosae): testing for key innovation with incomplete taxon sampling. *Systematic Biology* 61(3): 443–460.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32(5): 1792–1797.
- Gabel ML. 1987. A Fossil *Lithospermum* (Boraginaceae) from the Tertiary of South-Dakota. *American Journal of Botany* 74(11): 1690–1693.

- García-Maroto F, Manas-Fernández A, Garrido-Cárdenas JA, López Alonso D, Guil-Guerrero JL, Guzmán B, Vargas P. 2009. Delta6-desaturase sequence evidence for explosive Pliocene radiations within the adaptive radiation of Macaronesian *Echium* (Boraginaceae). *Molecular Phylogenetics and Evolution* 52(3): 563–574.
- Gladstones JS. 1974. Lupins of the Mediterranean region and Africa. Perth: Govt. Pr.
- Hughes CE, Atchison GW. 2015. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. *New Phytologist*: DOI: 10.1111/nph.13230.
- Hughes CE, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. *Proceedings of the National Academy of Sciences of the United States of America* 103(27): 10334–10339.
- Huzioka K, Takahasi E. 1970. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. Akita, Japan: Akita University, Mining College.
- Kearse M, Moir R, Wilson AC, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitu S, Duran C, et al. 2011. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12): 1647–1649.
- Landis MJ, Freyman WA, Baldwin BG. 2018. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. *Evolution* 72(11): 2343–2359
- Mai DH, Walther H. 1991. Die oligozänen und untermiozänen Floren Nordwest-Sachsens und des Bitterfelder Raumes. Dresden, Germany: Staatliches Museum für Mineralogie und Geologie zu Dresden.
- McVaugh R, Anderson WR. 1987. Flora Novo-Galiciana: a descriptive account of the vascular plants of Western Mexico. Ann Arbor: University of Michigan Press.
- Nevado B, Atchison GW, Hughes CE, Filatov DA. 2016. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. *Nature Communications* DOI: 10.1038/ncomms12384
- Nürk NM, Blattner FR. 2010. Cladistic analysis of morphological characters in *Hypericum* (Hypericaceae). *Taxon* 59(5): 1495–1507.
- Nürk NM, Madriñán S, Carine MA, Chase MW, Blattner FR. 2013a. Molecular phylogenetics and morphological evolution of St. John's wort (*Hypericum*; Hypericaceae). *Molecular Phylogenetics and Evolution* 66(1): 1–16.
- Nürk NM, Michling F, Linder HP. 2018. Are the radiations of temperate lineages in tropical alpine ecosystems preadapted? *Global Ecology and Biogeography* 27(3): 334–345.
- Nürk NM, Scheriau C, Madriñán S. 2013b. Explosive radiation in high Andean *Hypericum* Rates of diversification among New World lineages. *Frontiers in Genetics* 4(175): 1–14.
- Nürk NM, Uribe-Convers S, Gehrke B, Tank DC, Blattner FR. 2015. Oligocene niche shift, Miocene diversification -Cold tolerance and accelerated speciation rates in the St. John's Worts (*Hypericum*, Hypericaceae). *Bmc Evolutionary Biology* 15(80): 1–13.
- Ozaki K. 1991. Late Miocene and Pliocene floras in Central Honshu, Japan. Yokohama, Japan: Kanagawa Prefectural Museum.
- Rambaut A, Drummond AJ 2007. Tracer v1.4: Available from http://beast.bio.ed.ac.uk/Tracer
- Robson NKB. 1987. Studies in the genus Hypericum L. (Guttiferae): 7. Section 29. Brathys (part 1). Bulletin of the British Museum (Natural History), Botany 16(1): 1–106.
- Robson NKB. 1990. Studies in the genus *Hypericum* L. (Guttiferae): 8. Sections 29. *Brathys* (part 2) and 30. *Trigynobrathys. Bulletin of the Natural History Museum. Botany series. London* 20(1): 1–151.
- Robson NKB. 1996. Studies in the genus *Hypericum* L. (Guttiferae): 6. Sections 20. *Myriandra* to 28. *Elodes. Bulletin of the* Natural History Museum. Botany series. London 26(2): 75–217.
- Robson NKB. 2012. Studies in the genus *Hypericum* L. (Hypericaceae) 9. Addenda, corrigenda, keys, lists and general discussion. *Phytotaxa* 72: 1–111.
- Romeiras MM, Paulo OS, Duarte MC, Pina-Martins F, Cotrim MH, Carine MA, Pais MS. 2011. Origin and diversification of the genus *Echium* (Boraginaceae) in the Cape Verde archipelago. *Taxon* 60(5): 1375–1385.
- Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22(21): 2688–2690.
- Talavera S, Andrés C, Arista M, Fernández Piedra MP, Gallego MJ, Ortiz PL, Romero Zarco C, Salgueiro FJ, Silvestre S, Quintanar A. 2012. Flora Iberica. Vol. XI, Gentianaceae-Boraginaceae. Madrid: Real Jardín Botánico, CSIC.
- Wagner WL, Herbst DR, Sohmer SH. 1999. Manual of the flowering plants of Hawai'i. Honolulu, Hawaii, United States: University of Hawaii Press; revised edition.