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S1. Derivation of general exclusion zone equation 
 
Assume that the site of the newly dead tree is unavailable to conspecifics of the dead tree 

and trees in the E – 1 surrounding sites (for example, E=9 for a 3 by 3 square exclusion zone) 
due to Janzen-Connell effects. To increase in abundance, species i must not include a tree in the 
E-cell exclusion zone. If the absence of species i in a cell is independent of its absence from 
adjacent cells, this has probability (1 – Ni/J)E = (1 – fi)E. Since J-C effects prevent species i from 
being in cells within an exclusion distance of each other, species i should be more uniformly 
distributed than this, so this is an upper bound on the actual probability. As species i approaches 
a spatially uniform arrangement, the probability of its absence in the exclusion zone approaches 
1 – Efi. (This can be shown as follows. Let pk be the probability that there are k species-i trees in 
a random E-cell exclusion zone. Then the expected value of the number of these trees is 

𝑘𝑝#	%
#&' . However, if species i is uniform in space and fi < 1/E, then there can only be 0 or 1 

tree in an exclusion zone. So the expected value of the number of species-i trees is 0(p0) + 1(p1) 
= p1 = 1 – p0. But since fi is the average density, the expected value of the number of species-i 
trees in E cells must be Efi. Therefore assuming spatial uniformity p0 =1 – Efi. Since uniformity 
in space is the most regular spatial distribution possible, 1 – Efi is a lower bound. Assuming fi is 
small, the upper [(1 – fi)E] and lower [1 – Efi] bounds are close to each other (the linear term is 
the result of dropping higher order terms from a binomial or Taylor expansion), and we use the 
latter, simpler, expression that is also consistent with a relatively uniform spatial distribution.  

If species i is not in the exclusion zone, the probability that the dead tree’s replacement 
on the first attempt is species i is P1 = Ni/(J – E) ≈ fi (since J >> E). If species i is not selected on 
the first try (which has probability 1 – fi), a prohibited species is selected with probability E/(S – 
1), since there are E cells in the exclusion zone and we are assuming that they are occupied by S 
– 1 different equally abundant species. In this case, species i has another chance to colonize with 
probability P2 ≈ (1–fi)E/(S – 1). The probably that species i is selected is again P1, and if instead 
a prohibited species is selected randomly, species i gets a third chance with probability P2, and so 
on. The probability of species i replacing the dead tree (given that it is not an excluded species) 
is the sum of the probability that i is chosen on the first or subsequent tries, which is a geometric 
series. The probability that species i increases in abundance is the product of the probability 
defined by the geometric series, 𝑃)𝑃*+,

+&' , which equals -.
)/-0

, and the probability that species i 
is not in the exclusion zone,	 1 − 𝐸𝑓5 . Therefore, 

    Pr 𝑁5 + 1|𝑁5 ≈ 1 − 𝐸𝑓5 𝑃)𝑃*+,
+&' = )/%=> -.

)/-0
≈ 1 − 𝐸𝑓5

=>

)/
.?@> A
B?.

= ()/%=>)=>(E/))
E/)/%F%=>

. 

Species i decreases in abundance if it dies, which has probability Pr 𝑁5 − 1|𝑁5 = 𝑁5/𝐽 = 𝑓5, 
since a dead tree cannot be replaced by another of the same species. The ratio between the 
probability of increase and of decrease is therefore 
   Pr 𝑁5 + 1|𝑁5 / Pr 𝑁5 − 1|𝑁5 ≈ (1 − 𝐸𝑓5)(𝑆 − 1)/(𝑆 − 1 − 𝐸 + 𝐸𝑓5).  
 

We assumed that the non-focal species (all except species i) are equally abundant to make 
the derivation simpler, and because we do not know the actual distribution of abundances. 
However, we can show the effect of heterogeneity in abundances. Assume that the focal species 
is assigned species number S, and the non-focal species have abundances Nj ( and the total 
abundance of non-focal species i is the sum of Nj from j = 1 to S – 1). Now the probability that a 
tree of species j is selected to replace the dead tree (given that a tree that is species i is not) is 
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Nj/(J -  Ni) (species j’s relative abundance among non-i trees). The probability that species j is in 
a particular cell in the exclusion zone (give that species i is not) is the same. The probability that 
it is in any cell in the exclusion zone is approximately ENj/(J -  Ni) (using the same argument 
giving the approximate probability of species i being absent from the exclusion zone). Therefore, 
the expression for P2 above including this heterogeneity would be  
 

( ) ( )2 2 21 1
2

2 2 2
1 1

(1 ) ( 1) 1 (1 ) 1(1 )(1 )
( ) ( ) 1

S S
i j j i jj j i

i j
j ji i i i

f E S N cv f E cvN EN f EP f N
J N J N J N J N S

- -

= =

- - + - +-
» - = = =

- - - - -å å , 

where jN  and cvj are the mean and coefficient of variation of Nj, respectively. The fact that jN  
is (J – Ni)/(S – 1) is used in the last step. If species other than species i are equally abundant, then  
cvj = 0 and P2 ≈ (1–fi)E/(S – 1) as above. If there is variation, then this increases P2 from this 
value, because abundant species are more likely to be in the exclusion zone and more likely to be 
the selected replacement, meaning there are more rejections. Having S – 1 non-focal species with 
coefficient of variation cvj is equivalent to having (S – 1)/(1 + cvj

2) non-focal species in 
determining the ratio of probability of increase to decrease of the focal species. Since this is a 
lower number of non-focal species, the rare species advantage is increased by heterogeneity and 
diversity maintenance is stronger.  
  
S2. Average number of species in a 9 cell exclusion zone assuming 
equal abundances and random placement 
 
 The average number of species in a 9 cell exclusion zone (one-crown exclusion distance) 
is 9

1
[ ] mm
E m mp

=
=å , where pm is the probability that there are m different species in an exclusion 

zone. These probabilities can be found under the assumption that all species are equally likely to 
be found in each cell (independent of the species in other cells). In this case, all arrangements of 
species in the cells are equally likely, so the probability of m species is the number of 
arrangements with m species divided by the total number of arrangements. If there are S species, 
there are S possible species in each cell, and the total number of species arrangements in 9 cells 
is S9.     
 If the number of species is large, the most common situation will be a different species in 
each of the 9 cells, so m = 9. The number of arrangements that have 9 different species is the 
product of the number of 9-species combinations that can be chosen from S species, which is

9
Sæ ö
ç ÷
è ø

, and the number of ways to arrange those in 9 cells, which is 9!. Therefore, 9 9

9!
9
S

p
S

æ ö
= ç ÷
è ø

 . 

The next most common number of species is 8, which results from having one species in 2 cells 
and different species in all the others. The number of ways to select one species to fill two cells 

from the S species is 
1
Sæ ö
ç ÷
è ø

, and the number of ways to select the 7 others from the remaining S – 

1, is 
1
7
S -æ ö
ç ÷
è ø

, which gives the number of species combinations as 
1

1 7
S S -æ öæ ö
ç ÷ç ÷
è øè ø

. There are again 9! 

permutations of 9 trees, but since 2 of the trees are of the same species, permutations that differ 
only by having the cells of these two trees reversed are the same in terms of species arrangement. 
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Therefore, the number of permutations is 9!/2!. This gives a probability of 

8 9

1 9!
1 7 2!
S S

p
S

-æ öæ ö
= ç ÷ç ÷
è øè ø

 . There are two ways to get 7 species: one species can occupy 3 cells and 

the other cells each have a unique species, or two species can have 2 each and the others each 

have a different species. Summing these gives 7 9 9

1 29! 9!
1 6 2 53! 2!2!
S S S S

p
S S

- -æ öæ ö æ öæ ö
= +ç ÷ç ÷ ç ÷ç ÷
è øè ø è øè ø

. The 

first term is for the case with one species in 3 cells and is directly analogous to the 8-species case 
above. For the second term, two species are initially chosen (those with abundance 2) and then 
the remaining 5 species, and the number of permutations is divided by 2! for each two-cell 
species. pm for other m can be found similarly. 
 For S = 100, p9 = 0.6903, p8 = 0.2701 and p7 = 0.0373, which sums to over 99.7% of the 
total probability. The contribution of these terms to the expected value of the number of species, 
is 9

7 8 97
7 8 9mm

mp p p p
=

= + +å  = 8.634. (Including the other values of m gives an expected 
number of species of 8.648.) For higher S, this value would be even larger, so the assumption 
that an exclusion zone has 9 species if all species are equally abundant is reasonable, especially 
since exclusion zones might produce a more uniform spatial distribution, which should increase 
the expected value relative to the random arrangement case presented here. 
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S3. Absorbing Markov chain with equations for a general exclusion 
zone 
 The equations for probabilities of increase and decrease of a focal species i can be used to 
define an absorbing Markov chain (the states are feasible values of Ni; only state 0 is absorbing if 
there is an exclusion zone). The probabilities of transitions between each pair of non-absorbing 
states define a matrix P, where Pij is the probability of going from state i to j. The expected 
number of steps until extinction of species i starting with Ni = k is the kth element of the vector (I 
– P)-11, where I is an identity matrix and 1 is a vector of 1s. We first calculated this for the initial 
number of species in a simulation, S0, using starting abundance k = J/S0 (the mean species 
abundance). The calculated extinction time used the assumption that all non-focal species remain 
equal in abundance. Since all species vary in abundance, we divided this time to extinction of 
species i by S0 to approximate the time until the first extinction (when S goes from S0 to S0 – 1). 
We then repeated the procedure for S0 – 1 species, to give the time from first to second 
extinction, and so on for each lower value of S until the cumulative total time was at least 2 × 
1011. S as a function of cumulative time was then plotted for E=1, 9, 25 and 49 for J = 40,000 
(Fig. 3c) and 160,000 (Fig. 3d). We additionally compared projected declines of species richness 
through time with the initial conditions S0=1000 to S0=3000 (Fig. S1). All projections based on 
the absorbing Markov chain using approximate equations from the text are consistent with the 
results from numerical simulation. 

 
Figure S1. Comparing projections of species richness through time with initial species 
richness of 3000 and 1000 for an exclusion zone of one tree crown on an 800x800 landscape. 
The projection from the absorbing Markov chain is based on the equations in the main 
text. The solutions from Markovian process are remarkably consistent with the results 
from simulation. 
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S4. Software to implement simulations 
To implement simulations with exclusion zones on large spatial and long temporal scales, we 
developed an algorithm and provide a software package for high-performance computing called 
FEZ (Forest Exclusion Zones), with the bulk of the simulation itself written in C++ for speed. 
The software can be found on the Levi Lab’s software page 
(http://people.oregonstate.edu/~levit/software/). FEZ packaged release was created utilizing the 
GNU tool Autoconf with a standard ./configure, make, make install setup. FEZ’s managing 
system is a python script named controller.py that creates and maintains the location and file 
structure of the data that is generated by the C++ code. It is the script that users interact with to 
start simulation runs. The following parameters are adjustable using controller.py: landscape 
rows, landscape columns, number of tree replacements, number of species, size of the exclusion 
zone, the chance of a forced replacement occurring, and how many simulations will be run on a 
single thread. The program writes, at regular intervals, a Comma Separated Value (CSV) file that 
indicates the species at each position on the landscape at that time. The program also stores the 
number of extinctions at regular intervals and prints these at the end of a simulation. Each of 
these intervals can also be specified. Controller.py makes use of the following python libraries: 
sys, os, shutil, getopt, and subprocess. The C++ code is called by the controller, runs the 
simulation, and generates the CSV files and extinction output file. The C++ code relies on the 
following libraries: ostream, stdio.h, stdlib.h, time.h, iomanip, fstream, string, sstream, string.h, 
and Math.h. Once the data are generated by the C++ code, an R script utilizes the libraries knitr 
and markdown to generate HTML output to summarize model results, including species richness 
and extinctions over time and rank-abundance curves. 
 
Table S1: The libraries used by each component of FEZ 
PYTHON  C++   R  
Sys   ostream  knitr 
os   stdio.hMarkdown    
shutil   stdlib.h 
getopt   time.h 
subprocess  iomanip 
   fstream 
   string 
   sstream 
   string.h 
   Math.h 
 
 
Algorithm 
The C++ code contains the entire FEZ algorithm and utilizes a two-dimensional matrix to model 
the forest landscape, which was a square lattice. For the simulations that we present, the 
landscapes were 200x200, 400x400, 800x800, and 1600x1600. To eliminate edge effects on our 
landscape, the FEZ algorithm adds 20% more rows and columns to create a functional buffer of 
10% around all sides of the FEZ landscape. The cells in this buffer fully interact with the 
simulation but are not summarized for results in the CSV outputs or extinction snapshots. This 
extra space is used to minimize the influence of edge cases on the actual data generated from the 
simulation. Finally, another 20 rows and columns are added to produce a buffer of 10 spaces 
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encircling the landscape to prevent memory issues when interacting with exclusion zones. Unlike 
the previous functional buffer that is filled with trees, this buffer is filled with negative values 
that do not affect the simulation (Fig. S2).  
 

  
Figure S2: The green square represents the landscape size provided by the user, rows times 
columns. The blue border is a functional buffer that is 10% larger on each side, engages 
with our simulation, but is not included in the CSV files or snapshots. The grey border is a 
deadzone of size 10 on each side filled with no tree species that acts as error prevention. 
 
At the start of the simulation the landscape is randomly filled with tree species from the 
information provided by the user in the “number of species” variable. For example, if FEZ is 
passed 1000 initial tree species, every matrix cell is randomly filled with a single integer from 
the range 0-999, each representing a unique tree species. The simulation then generates a CSV 
file to represent this initial landscape. The extinction tracker then counts the number of existing 
tree species in the initial landscape. 
 
Once the initial landscape CSV file is created, the tree replacement process begins. The 
simulation randomly picks two matrix locations to select a target tree that will die and be 
replaced and a sample tree that the simulation will use to attempt to replace the target tree. Once 
the two trees are selected, the simulation checks the square area given by the exclusion zone 
surrounding the target tree to see if a tree of the sample tree’s species already exists within the 
exclusion zone. If there is no conspecific to the sample tree in the exclusion zone, then a tree of 
the sample tree’s species replaces the target tree and the next tree replacement begins. If a 
conspecific to the sample tree is present in the exclusion zone, then the sample tree’s species 
would generally be excluded, but can occasionally replace the target tree, with a probability 
specified by the user (the force rate). In this experiment, we used a force rate of 1/20 for a 5% 
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chance that the target tree replaces a sample tree even if a conspecific is present within the 
exclusion zone, and we additionally checked the sensitivity of our results using a 20% force rate, 
and 50% force rate. If the sample tree cannot replace the target tree, the simulation selects a new 
sample tree until a valid move is possible. When a tree is successfully replaced, the extinction 
tracker device updates the new tree abundances and the simulation continues. This process 
continues until a fixed number of tree replacements occur, which in this experiment was 200 
billion. 
 
The FEZ algorithm uses the parameters passed for number of CSVs and number of snapshots to 
create these files and data entries at equidistant points in time based on the number of tree 
replacements. This experiment used 200 CSV files and 20,000 extinction snapshots which 
caused CSVs of the landscape configuration to be generated every one billion tree replacements 
and snapshots of the number of extinctions to be stored every ten million tree replacements. The 
snapshotting mechanism counts how many tree species have zero abundance and stores that 
information in a data structure. Once the simulation has completed all tree replacements, the 
simulation then writes the number of extinctions over time to the file extinction.txt. 
 
S5. Results using other diversity metrics 
 
Results from our simulations using Shannon Diversity and effective species richness (i.e. 
exponential of Shannon Diversity) closely mirror the results in the main text using species 
richness (Fig. S3). 

 

Figure S3. Shannon diversity and effective species richness (i.e. exponential of Shannon 
Diversity) after 200 billion iterations of the simulation model for the four landscape sizes 
(200x200, 400x400, 800x800, and 1600x1600) and four exclusion zones. Red, yellow, green, 
and blue refer to exclusion of dead tree only, one, two, and three tree crowns of exclusion 
(E = 1, 9, 25, and 49). 
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