
Global variation in the thermal tolerances of plants
Lesley T. Lancastera,1 and Aelys M. Humphreysb,c

aSchool of Biological Sciences, University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom; bDepartment of Ecology, Environment and Plant Sciences,
Stockholm University, 10691 Stockholm, Sweden; and cBolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden

Edited by James H. Brown, University of New Mexico, Morro Bay, CA, and approved April 20, 2020 (received for review October 16, 2019)

Thermal macrophysiology is an established research field that has
led to well-described patterns in the global structuring of climate
adaptation and risk. However, since it was developed primarily in
animals, we lack information on how general these patterns are
across organisms. This is alarming if we are to understand how
thermal tolerances are distributed globally, improve predictions of
climate change, and mitigate effects. We approached this knowl-
edge gap by compiling a geographically and taxonomically exten-
sive database on plant heat and cold tolerances and used this
dataset to test for thermal macrophysiological patterns and pro-
cesses in plants. We found support for several expected patterns:
Cold tolerances are more variable and exhibit steeper latitudinal
clines and stronger relationships with local environmental temper-
atures than heat tolerances overall. Next, we disentangled the
importance of local environments and evolutionary and biogeo-
graphic histories in generating these patterns. We found that all
three processes have significantly contributed to variation in both
heat and cold tolerances but that their relative importance differs.
We also show that failure to simultaneously account for all three
effects overestimates the importance of the included variable,
challenging previous conclusions drawn from less comprehensive
models. Our results are consistent with rare evolutionary innova-
tions in cold acclimation ability structuring plant distributions
across biomes. In contrast, plant heat tolerances vary mainly as a
result of biogeographical processes and drift. Our results further
highlight that all plants, particularly at mid-to-high latitudes and in
their nonhardened state, will become increasingly vulnerable to
ongoing climate change.
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As our global climate continues to change, there is a need to
increase understanding of the ecological and evolutionary

processes that cause variation in temperature tolerances across
organisms and biomes. Improved knowledge of how individuals
cope with novel extreme thermal conditions can lead to better
predictions of how species and communities will respond to cli-
mate change and aid development of mitigation strategies (1, 2).
Moreover, knowledge of how thermal tolerances are distributed
geographically and phylogenetically sheds light on the funda-
mental biogeographic and evolutionary processes that shape in-
herent physiological limits (3, 4), with important implications for
how and why species’ range limits and biodiversity gradients are
formed (5, 6). As a consequence, the past decade has seen a
reinvigoration of the field of macrophysiology (4, 7–9), and
several global analyses of physiological thermal limits have been
conducted for different animal groups (3, 10–12). However,
equivalent in-depth studies for nonanimal systems are lacking,
limiting the generality of our understanding and ability to predict
biotic responses to climate change.
Previous work on the global distribution of thermal tolerances

in animals has led to the recognition of several major patterns,
including (i) cold tolerances are more phenotypically variable and
exhibit greater acclimation response than heat tolerances, for a
similar set of organisms (11, 13), (ii) cold tolerances exhibit
stronger latitudinal clines than heat tolerances (3, 10), (iii) the
extent to which acclimation improves thermal tolerance increases
with latitude (4, 14), and (iv) signatures of local adaptation in

thermal tolerances are stronger under more extreme conditions
(i.e., under strong directional selection; refs. 15–18).
Multiple hypotheses have been developed to explain these

patterns, in particular the lower latitudinal variability and accli-
mation capacity of heat tolerances in comparison to cold toler-
ances. Hypotheses include lower evolvability of heat tolerance
(11, 13), lower spatial variability in extreme heat than extreme
cold environmental conditions themselves, limiting the magni-
tude of divergence in local adaptation for heat tolerance (3),
and/or stronger mechanistic or scaling-related associations be-
tween metabolic optima and heat tolerance (19, 20). However,
biogeographic processes, such as range shifts and endemism, may
also play critical roles in driving the global distribution of heat or
cold tolerances, both because limited dispersal between specia-
tion events can constrain the phylogenetically determined rate of
thermal tolerance evolution (21) and because large-scale dis-
persal events, e.g., during postglacial and contemporary range
shifts, can transport thermal tolerance limits far from where they
evolved (18). Species movement processes can also produce
asymmetrical variability in heat vs. cold tolerances, depending on
whether net migration is to colder or warmer regions (18).
Here, we test the diverse patterns and hypotheses developed

for animals in a previously overlooked group: land plants. Plant
thermal tolerances have been extensively studied in a mecha-
nistic context (22, 23), but they have rarely been used to test
fundamental macrophysiological hypotheses (but see discussions
in refs. 24–26). Latitudinal gradients have been discovered for
several other ecologically important plant traits (e.g., refs.
27–29), but latitudinal gradients in plant thermal tolerances re-
main undescribed (but see ref. 25). This is surprising given that
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plants cover every terrestrial surface of Earth, and that their dis-
tribution is strongly spatially and climatically structured, with tem-
perature being considered one of the strongest determinants of
plant distribution patterns globally (30, 31). The spatial structuring
of plants is reflected in the major biomes of the world (e.g.,
broadleaf forest, coniferous forest, and grassland) and is the result
of biogeographical and evolutionary processes over thousands to
millions of years (32–34). Contemporary range shifts in response to
changing climates have been documented for plants (35, 36),
but migration through anthropogenically fragmented land-
scapes may be too slow for many species to keep pace with
geographically shifting climate niches (37); the already ele-
vated rates of plant extinction in the Anthropocene (38) are
therefore likely to increase.
To increase understanding of global patterns of plant thermal

tolerances, and how such patterns evolve, we compiled a database
of thermal tolerances from the literature (Dataset S1), examined
latitudinal patterns, and tested for the importance of local climate,
phylogeny, and geographic distance in explaining those patterns,
taking into account hardening status and method, measurement
method, and hemisphere. We further fitted phylogenetic trait
evolution models to test for a potential constraint in heat and
cold tolerance evolution. Given the large variation in lifespan,
growth form, and dispersal ability across land plants, the as-
sociated myriad ways in which they avoid or tolerate thermal
stress might lead to new patterns, and confirm or refute existing
macrophysiological hypotheses developed for (ectothermic)
animals.

Results
Geographic and Taxonomic Coverage of Plant Thermal Tolerance
Data. We searched the literature for published estimates of geore-
ferenced physiological thermal limits for land plants, focusing on
both heat tolerance (Tmax) and cold tolerance (Tmin). These es-
timates represent a set of measures for assessing the environmental
temperatures under which plants lose function physiologically. We
found 70 books, monographs, and articles, which provided n = 1,732
thermal tolerance data points with geographical information for n =
1,028 plant species (Dataset S1). The thermal tolerance data were
gathered from 246 unique locations (149 for cold and 138 for heat
tolerance; Fig. 1 A and B). In addition, n = 806 records included
confirmed information on hardening or acclimation status.
Across all data, there is more variation in cold than heat tol-

erance (Tmin: mean −15.4 ± 17.4 °C SD, Tmax: 51.3 ± 5.8 °C).
Most of the variation in cold tolerance comes from hardened
plants in the Northern Hemisphere, especially cushion plants and
gymnosperms (Fig. 1 C and D). There are very few data for
Southern Hemisphere bryophytes, lycophytes, and ferns. (See SI
Appendix, sections i–v, Figs. S1–S3, and Table S1 for further
analysis and discussion of thermal tolerances in the context of
taxonomic group, growth form, experimental approach, other
plant traits, and plant thermal tolerance and avoidance strategies.)

Phylogenetic Signal and Evolutionary Mode of Heat and Cold
Tolerance. To estimate phylogenetic signal and test how cold
and heat tolerances are evolving across land plants, we obtained
phylogenetic information (39) for n = 653 and 455 species for
heat and cold tolerance, respectively, representing 95% and 89%
of the total dataset, respectively, with a bias against retention of
nonvascular plants (SI Appendix, Fig. S4). Heat and cold toler-
ances exhibited similar phylogenetic signal, being significantly
different from both 0 and 1 (cold: λ = 0.67, difference in cor-
rected akaike information criterion (ΔAICc) ≥ 55; heat: λ =
0.65, ΔAICc ≥ 100; SI Appendix, Table S2). Further, we tested
whether there was support for heat tolerance being evolution-
arily constrained, as expressed by an Ornstein–Uhlenbeck (OU;
ref. 40) model, in which species’ heat tolerances are pulled to an
optimal value, and whether there was support for punctuated

evolution for cold tolerance, as expressed by a “kappa” (κ) model
(41), and as expected if extreme cold tolerance is conferred by
hardening ability and that ability evolves only rarely (ref. 42 and
SI Appendix, sections vi–viii, Tables S2 and S3, and Figs. S4–S5).
The OU model could not be rejected in any of the analyses for

either heat or cold tolerance (based on ΔAICc ≥ 3.0; SI Appendix,
Table S2); it was the best model in all cases except nonhardened
heat, where the λ model had a slightly better fit (ΔAICc = 1.83).
Nevertheless, parameter estimates suggest that the OU model is a
better explanation for change in heat tolerances than cold toler-
ances: The stationary variance (σ2/2α), which measures the rate of
stochastic change (or “drift,” as described by Brownian motion
[BM], σ2) relative to the strength of the adaptive pull (α) toward
the optimal value, is much higher for cold tolerance (344.3
[overall], 566.5 [hardened-only]) than heat tolerance (33.7 [over-
all], 26.4 [hardened-only]; SI Appendix, Table S3). This suggest a
much weaker pull toward a globally optimal thermal state for cold
tolerance than for heat tolerance.

Spatial Autocorrelation. Both heat and cold tolerance exhibited
significant spatial autocorrelation, calculated using Moran’s I,
particularly at short to moderate spatial scales (i.e., within 50°
latitude or longitude, corresponding to ∼5,000 km; SI Appendix,
Fig. S6), both within and across taxonomic groups (SI Appendix,
section ix). There is a clearer distance–decay relationship in cold
tolerance than in heat tolerance. For cold tolerance, spatial au-
tocorrelation is stronger in hardened than in nonhardened in-
dividuals, whereas for heat tolerance, hardened and nonhardened
individuals show similar levels of spatial autocorrelation (SI Ap-
pendix, Fig. S6).

Global Variation in Thermal Tolerances: Latitudinal Trends.We tested
for latitudinal variation in thermal tolerance using a Bayesian
mixed modeling approach (43), further testing whether lat-
itudinal effects on Tmin or Tmax were impacted by hemisphere
and hardening status, and correcting for effects of phylogeny,
sampling location, growth form, and the experimental approach
used to assess tolerance. For heat tolerance, the best fit model
included a significant three-way interaction among latitude,
hemisphere, and hardening status, as well as significant two-way
interactions between each of these variables: effect of latitude ×
hemisphere × hardening status = 0.27 [0.12–0.45 CI], P < 0.005;
effect of latitude × hardening status = −0.32 [−0.44 to −0.16 CI],
P < 0.005; effect of hemisphere (S) × hardening status = −12.39
[−16.95 to −6.28 CI], P < 0.005; effect of latitude × hemisphere
(S) = −0.23 [−0.42 to −0.03], P = 0.01 (Fig. 2 A and B). Heat
tolerance declines with latitude, but this is primarily observed in
hardened individuals, and the difference in latitudinal patterns
between hardened and nonhardened individuals was also driven
primarily by Northern Hemisphere plants.
The best Bayesian mixed model describing latitudinal effects

on cold tolerance included significant fixed effect interactions of
both latitude and hemisphere with hardening status, but not a
three-way interaction among all three of these variables: effect of
latitude × hardening status = −0.29 [−0.46 to −0.09 95% CI],
P < 0.005; effect of hemisphere (S) × hardening status = 9.96
[6.58–13.95 CI], P < 0.005 (Fig. 2 C and D). In essence, the
global distribution of cold tolerance in plants exhibits the pre-
dicted latitudinal variation (better tolerance at higher latitudes),
but this pattern only holds for hardened individuals. For non-
hardened individuals, there is no apparent latitudinal variation in
cold tolerance. Moreover, latitudinal variation in hardened in-
dividuals is driven largely by Northern Hemisphere plants, as
hardening status has negligible effects on cold tolerance in the
Southern Hemisphere.
As is typically found in ectothermic animals and has previously

been reported in plants (25, 44), Tmax was closest to local
environmental heat extremes at mid latitudes and in the
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Northern Hemisphere, with unhardened heat tolerances often
being exceeded by local environmental thermal maxima there
(SI Appendix, section x and Fig. S7). In contrast, Tmin was at
greatest risk for increasing cold snaps at high latitudes in
both hemispheres, where estimated Tmin values, especially
unhardened, already often fail to protect individuals against
extremes of local environments (SI Appendix, section x and
Fig. S7).

Environmental Predictors of Cold and Heat Tolerances. After correcting
for phylogeny, geographic distance, growth form, and experimental
approach, the best Bayesian mixed model describing environmental
effects on Tmax included significant interactions of mean annual
temperature and temperature seasonality with hardening status
(effect of mean temperature × hardening status = 0.24 [0.13–0.37
CI], P < 0.005; effect of seasonality × hardening status = 0.53
[0.13–0.90 CI], P < 0.005). Hardened heat tolerance increased at
higher values of temperature mean and seasonality, but non-
hardened heat tolerance was not positively affected by these
environmental variables (SI Appendix, Fig. S8). However,
combined fixed effects of environment and hardening status
explained very little of the variation in heat tolerance overall
(Fig. 3).
The best Bayesian mixed model describing environmental effects

on Tmin included significant interactions between fixed effects of
mean annual temperature and temperature seasonality of the site

with hardening status (effect of mean temperature × hardening
status = 0.88 [0.50–1.31 CI], P < 0.005; effect of seasonality ×
hardening status = −0.26 [−0.32 to −0.19 CI], P < 0.005; SI Ap-
pendix, Fig. S8). In effect, these environmental factors predicted
variation in hardened cold tolerance (hardened Tmin was posi-
tively correlated with mean temperature, and negatively correlated
with temperature seasonality), but, as for Tmax, hardening
and environmental variation explained only a small proportion
of the overall variance in Tmin (Fig. 3), and none at all for
nonhardened Tmin, which exhibited less correlation with en-
vironmental variables (no correlation with mean tempera-
tures, shallower correlation with temperature seasonality; SI
Appendix, Fig. S8).

Global Variation in Thermal Tolerances: Intrinsic, Biogeographic, and
Environmental Drivers. In the context of our Bayesian mixed mod-
els, we further partitioned the variance in cold and heat tolerance
among fixed effects of local climate variables × hardening status,
geographic and phylogenetic distances, growth form, and experi-
mental method (Fig. 3). The total variance in heat tolerance
(Tmax) explained by the model was 92% [36–149% highest pos-
terior density (HPD) interval], with spatial distance having the
largest effect (41% [20–57%]), followed by measurement method
(25% [7–47%]), fixed effects of local environment and acclimation
(14% [5–22%]), phylogeny (11% [4–18%]), and growth form (only
1% [0.01–5%]; Fig. 3A).

A C

B D

Fig. 1. Global variation in plant thermal tolerances—distribution of data. (A and B) Geographic distribution of heat (A) and cold (B) tolerance measurements
(n = 966 for Tmax, n = 769 for Tmin). The size of the circles is proportional to the number of data points it represents and ranges from 1 to 114 measurements
at the same location for heat and cold tolerance together. Color hues are used for visibility but do not indicate hardening status (c.f. C and D). Most thermal
tolerance data are from North America, Europe, Australia, and New Zealand with very few records from Africa or Asia. (C and D) Variation in thermal
tolerance among major groups of land plants (C) and growth forms (D). Maximum temperatures (Tmax, heat tolerance) are plotted in reds and minimum
temperatures (Tmin, cold tolerance) in blues. In C and D, measurements on hardened plants are shown in dark hues and nonhardened (including those with
no information on hardening status) in light hues. In C, data for Northern (black frame) and Southern (gray frame) Hemispheres are plotted separately.
Vertical dashed lines denote the SD across all data for each of heat and cold tolerance, which is wider for cold than heat tolerance.
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The total variance explained for cold tolerance (Tmin) was
81% [48–126% HPD], with the largest proportion of the total
variance attributed to phylogeny (34% [23–48% HPD]), fol-
lowed by the fixed effects of local environmental variables

and hardening status (23% [16–31%]), geographic distance
(12% [6–21%]), measurement method (10% [3–26%]), and
very little variance explained by growth form (1% [0–5%];
Fig. 3A).

A B

C D

Fig. 2. Latitudinal clines in plant thermal tolerances. Latitudinal clines are largely driven by Northern Hemisphere plants in the hardened state and likely
reflect the combined influences of phylogenetic, biogeographic, and local adaptation processes (see Fig. 3 and SI Appendix, Figs. S4, S6, and S8 for graphical
depictions of these contributing factors). Maximum temperatures (Tmax, heat tolerance) (A and B) are plotted in reds and minimum temperatures (Tmin, cold
tolerance) (C and D) in blues; measurements on hardened plants are shown in dark hues and nonhardened (including those with no information on hardening
status) in light hues. Plotted relationships are marginal effects of climate x hardening status from reported models (see main text).
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Fig. 3. Variance partitioning of heat and cold tolerance among environmental effects (including hardening status), geographical distance, phylogenetic
distance, growth form, experimental protocol, and residual variance (dots and whiskers represent mean values ± HPD from the reported Bayesian analyses).
(A) Proportional variance in heat (red) and cold (blue) tolerance explained by each factor. (B) Total variance in heat (red) and cold (blue) tolerance explained
by each factor. Geographical, experimental, and growth form effects account for similar amounts of the total variance in heat and cold tolerance, with the
higher total variance in cold tolerance (Fig. 1) largely being explained by environmental and phylogenetic effects (plus a higher residual variance). However, a
significantly higher proportion of the overall variance in heat tolerance is explained by geography, with a significantly higher proportion of the variance in
cold tolerance being explained by phylogeny (plus residual variance). Other factors account for a similar proportion of the variance in both heat and cold
tolerance. Thus, the single most important factor for explaining global variation in heat tolerance among land plants is geographical proximity, while the
single most important factor for explaining variation in cold tolerance is phylogenetic relatedness.
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Differences in the proportional contribution of each of these
factors to heat vs. cold tolerance arise in part due to differences
in the total variance in these traits (greater for cold than for heat,
see above and Fig. 1). The total variance explained by environ-
mental factors is 11 [5–18] for heat tolerance vs. 76 [55–107
HPD] for cold; geographic distance: 32 [18–55] for heat vs. 41
[22–73] for cold; phylogeny: 9 [4–13] heat vs. 111 [61–163] cold;
growth form: 1 [0.1–4] for heat vs. 5 [1–18] cold; measurement
method: 21 [4–47] heat vs. 36 [2–92] cold; leaving a residual
variance of 6 [5–7] for heat vs. 62 [53–71] for cold (Fig. 3B). It is
evident that geographical distance, measurement method, and
growth form explain similar amounts of the absolute variance for
heat and cold tolerance. The larger total variance in cold toler-
ance is in addition explained by phylogenetic distance and local
environmental factors (as well as a larger residual variance).
Thus, the higher phenotypic variance in cold tolerance is largely
explained by phylogenetic distance and more extreme acclimation
processes.

Discussion
Our knowledge of the thermal tolerance of plants is extremely
limited; we found data for 1,028 land plant species overall, which
amounts to a mere 0.31% of the ca. 330,200 species recognized
(45). This acute lack of information on the intrinsic thermal
tolerances of most plants implies we have limited ability to in-
corporate such information in realistic predictions about how
specific plant lineages will fare under future climates and how
plant distributions might be altered. However, the dataset is
taxonomically and geographically broad (SI Appendix, Table S5)
and spans a large latitudinal range (Fig. 1), allowing for analysis
of how thermal tolerances vary globally and what might be
driving this variation.

The Generality of Macrophysiological Rules Developed in Animals.
Overall, we found several expected macrophysiological patterns,
including: greater overall and latitudinal variability in cold than
heat tolerance (Janzen’s rule; Figs. 1 and 2 and refs. 4, 11, 13,
and 46); greater acclimation potential at higher latitudes
(Vernberg’s rule; Fig. 2 and refs. 4 and 14); greater effect of
acclimation on cold than heat tolerance and greater acclima-
tion ability under more extreme climatic conditions (Payne’s
rule; SI Appendix, Fig. S8 and refs. 4, 47, and 48). These
patterns are in agreement with previous macrophysiological
“rules” primarily generated from the study of ectothermic
animals.
However, we also found significant departures from the

expected macrophysiological patterns. We found similar phylo-
genetic signal in heat and cold tolerance, but higher variance
explained by phylogeny for cold than heat tolerance (Fig. 3 and
see SI Appendix, Table S5 for how this compares to results from
animals). Variation in heat tolerance in plants was instead better
explained by geographic distance, a finding that has received
mixed support in animals (refs. 7, 8, and 16 and SI Appendix,
section xii and Table S5). In addition, we found a stronger
hemisphere effect on macrophysiological patterns and weaker
(often nonexistent) evidence for the macrophysiological drivers of
unhardened thermal tolerances of plants compared to animals (10,
13) (Fig. 3). We discuss our findings in detail below but, overall,
differences among studies (SI Appendix, Table S5) suggest more
work is required to understand what aspects of ecology, physiol-
ogy, and biogeography result in different phylogenetic, spatial, or
hemispherical signals in heat or cold tolerance distributions across
major divisions of life, as well as to establish the robustness of
these differences to varying geographic and/or phylogenetic scales
(and modeling approaches) of different study systems (SI Appen-
dix, sections iv and xii).

Evolutionary, Ecological, and Biogeographical Drivers of Global
Variation in Plant Thermal Tolerances. Our comprehensive mixed
modeling approach led to a number of important conclusions.
First, our models explained almost all variation in thermal tol-
erance for plants (81% for cold tolerance; 92% for heat toler-
ance). This suggests plant thermal tolerances can be understood
with just a few parameters, making predictions more straightfor-
ward. Second, our findings are not an artifact of measurement
method (cf. ref. 48). Third, our models show that phylogeny, ge-
ography, and the local environment are all needed to explain global
variation in thermal tolerances (Fig. 3). Failure to incorporate one
or more of these variables decreased the explanatory power of the
models overall and overestimated the importance of the factors
included (SI Appendix, section xi and Table S4). For example, in-
cluding only phylogenetic or geographic information inflated the
importance of the included random effect, while models including
neither phylogenetic nor geographic information enormously
inflated the apparent importance of the local environment and
acclimation status (fixed effect; SI Appendix, Table S4). This occurs
partly because of spatial autocorrelation in climates, meaning that
environmental effects can be confounded with effects of spatial or
phylogenetic processes, if gene flow or biogeographic events pro-
duce patterns of trait variance that correlate with, but are not
caused by, environmental gradients (18, 49). Our results can also be
explained by the tendency of closely related lineages to occur in
greater spatial proximity to each other and, thus, may also inhabit
more similar environments by chance, compared to more distantly
related species; failing to account for direct environment ef-
fects and spatial distance can therefore inflate the phyloge-
netic signal in thermal traits (21, 50, 51). Our results clearly
demonstrate that incomplete models that do not account for
all potential drivers simultaneously can yield erroneous con-
clusions about the importance of local adaptation, evolution-
ary legacies, or biogeographical drivers of global variation in
thermal tolerances.
At first glance, our resulting models were strikingly similar for

heat and cold tolerances: similar phylogenetic signal; similar
support for an evolutionary model with a central tendency (OU
model); similar importance of hardening and a Northern Hemi-
sphere distribution; similar levels of spatial autocorrelation; simi-
lar relationships with latitude (direction, not magnitude); similar
environmental temperature variables ranking highest in impor-
tance; and a conspicuous lack of any relationship with any pre-
cipitation variable (SI Appendix, section v). However, there were
major differences in the relative importance of each factor for
explaining variation in heat versus cold tolerance (Fig. 3), and the
parameter estimates of the OU models suggest different un-
derlying evolutionary processes (SI Appendix, Table S3). Taken
together, these results suggest that evolutionary history, particu-
larly transitions to and within cold hardening capacity, strongly
structure how plant cold tolerances are distributed globally. This is
consistent with evolutionary innovations in hardened cold toler-
ances playing a critical role in determining plant distributions
across biomes, and tropical-to-temperate transitions being key
evolutionary events (30, 42). In contrast, plant heat tolerances and
nonhardened cold tolerances are primarily structured spatially,
likely reflecting effects of gene flow or colonization history. The
magnitude of spatial drift in heat tolerance and nonhardened
cold tolerance may, however, be limited (13, 18), as indicated
by the relatively strong strength of the pullback to ancestral
values for these traits (SI Appendix, section vii and Table S3).
Thus, our results suggest strongly divergent underlying pro-
cesses structuring global variation in heat and (hardened) cold
tolerances of plants.

Implications for Climate Change. The importance of hardening in
our data has implications for plant responses to climate change.
Throughout, hardening status was found to be a significant
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mediator of patterns of both heat and cold tolerances; we found
no relationship of nonhardened thermal tolerances with latitude
(Fig. 2), and weaker or no relationships with the local environ-
ment (SI Appendix, Fig. S8). Yet, nonhardened tolerances may
become increasingly important under less predictable tempera-
ture fluctuations, which increase the exposure of unhardened
plants to extreme weather. Particular risks suggested by our data are
unseasonal cold snaps at high latitudes and unseasonal heat waves
at midlatitudes (SI Appendix, Fig. S7 and section x); such events
are predicted to increase under future climate scenrios (52).
An inability of plants to cope with higher or unseasonable

temperatures under future warming can affect the functioning of
entire ecosystems (53, 54). These changes have consequences not
only for the future survival and distributions of plants, but for the
animals and people that depend on them too. For example,
substantial losses to winegrowing areas have been predicted from
even modest warming (55), and freezing damage to grain crops
due to changing weather patterns is already a serious economic
problem (56). Understanding the ecological role of thermal
safety margins must therefore focus on thermal tolerance traits,
as well as how they interact with and trade-off against traits
that influence other aspects of plant survival, productivity, and
reproduction.

Methods
Dataset Construction. Suitable literature was identified using Web of Science
and Google Scholar, employing search strings including combinations of:
“heat,” “cold,” “temperature,” “limits,” “tolerance,” “metabolic,” “respira-
tion,” “photosynthesis,” “physiological,” “chill,” “freeze,” “critical,” and “le-
thal.” We also searched citing and cited references of relevant articles. The
search was carried out between October 2017 and January 2018. For reviewing
articles, e.g., ref. 24, we referred to the original study where possible. For
articles not written in English, we used Google Translate (https://translate.
google.com) to extract relevant methodological details. Across studies, ther-
mal tolerances were estimated on a variety of scales, but mostly included LT50
under heat or cold stress, assessed visually via stain uptake or electrolyte
leakage assessments (n = 439 heat, n = 512 cold), LT100 (n = 8 heat, n = 37
cold), Tcrit (n = 177 heat), Tmax (n = 340 heat), freezing resistance (n = 183
cold), freezing tolerance (n = 22 cold), or unknown, i.e., where the methods
were insufficiently recorded (n = 14). We also recorded hardening status (heat/
cold acclimation; n = 594 hardened vs. n = 212 nonhardened and n = 928
records where no information was provided). Where stated, we also separated
whether hardening was induced in the laboratory (n = 51 heat, n = 249 cold),
field (warming: n = 6 heat), or greenhouse (n = 36 cold) or was the result of
natural seasonal variation (n = 356 heat, n = 106 cold). Additional data ex-
ploration with respect to experimental approach is provided in SI Appendix,
section iii.

Environmental Variables. Climatic data for the spatial coordinates of the
collection localities for each thermal tolerance estimate were extacted using
the bioclim environmental layers (57) at the 10′ resolution using the raster
package for R (58, 59). Elevational data for each point were extracted
from the US Geological Survey GMTED2010 digital elevation model at the
30″ resolution (60). Where the elevation of a sampling location was
reported in the original report, we used this value. We further extracted distance
from the nearest coastline from the National Aeronautics and Space Adminis-
tration (NASA) oceancolor dataset, at the 0.01° resolution (61).

Growth Form, Taxonomic, and Phylogenetic Information. Taxonomic designa-
tions at the family, genus, and species levels were updated using the taxize
package for R, based on the Taxonomic Name Resolution Service (TNRS) and
National Center for Biotechnology Information (NCBI) databases (62–64). The
taxonomy was further verified using the World Checklist of Selected Plant
Families (WCSP, http://wcsp.science.kew.org), Tropicos (https://www.tropicos.
org), and The Plant List (http://www.theplantlist.org). Broad classifications
were then assigned as follows: bryophytes (liverworts and mosses), lycophytes,
“ferns” (ferns and horsetails), gymnosperms, and angiosperms. Using online
floras and the WCSP, we further recorded the growth form of each species
as woody perennial (including trees [>10 m height] and shrubs [<10 m]),
cushion plant (herbaceous or woody), herbaceous perennial (including
facultative angiosperm annuals, ferns, horsetails, and lycophytes), herba-
ceous annual, or bryophyte (including liverworts and mosses).

Phylogenetic information was obtained from Slik et al. (39) using the
Phylomatic query tool (65). For fitting phylogenetic trait evolution models,
branch lengths were set to 1. For fitting phylogenetic mixed models, an
ultrametric tree of unit height was generated with a default smoothing
parameter of 1, under a correlated substitution model, using the chronos()
function in ape (66).

Statistical Analyses.
Phylogenetic signal and trait evolution analyses for heat and cold tolerance. Phy-
logenetic signal and the best evolutionary model for cold and heat tolerances
were assessed using several models founded in BM (SI Appendix, sections
vi–viii). Models were fitted on the complete dataset and separately for
hardened and nonhardened subsets using Geiger (67) and compared using
AICc (68). To visualize the phylogenetic distribution of each trait (SI Ap-
pendix, Fig. S4), each tree was rescaled with the estimated phylogenetic
signal (λ) in Geiger and then ancestral states were reconstructed on the
rescaled tree using “fastAnc” in Phytools (69).
Spatial autocorrelation in heat and cold tolerance. Spatial autocorrelation was
tested using Moran’s I and a randomization test to determine the signifi-
cance of spatial autocorrelation at each distance class, using ncf (70). We
evaluated spatial autocorrelation separately for each broad taxonomic
group, as well as a combined estimate across all of our data. We also ex-
amined spatial autocorrelation of hardened vs. nonhardened tolerances
separately (SI Appendix, section ix). Significance of spatial autocorrelation at
each distance class was assessed using a Bonferroni correction for the
number of distance classes tested (n = 10 distance classes, α = 0.005). Further
testing for effects of geographic distance on thermal tolerance was con-
ducted in a mixed model framework simultaneously accounting for phy-
logeny and local environments (see below).
Global variation in thermal tolerances: Latitudinal trends. Bayesian linear mixed
effects models were fit using MCMCglmm (43), fitting either Tmin or Tmax as
the response variable, and including latitude, hemisphere, hardening status
(and hardening method; SI Appendix, section iii and Fig. S3), and all inter-
actions as fixed effects. An inverse phylogenetic similarity matrix was fit as a
random effect to account for autocorrelation due to phylogenetic distance,
and additional random effects were included to account for growth form,
effects of shared sampling locations (concatenated Lat/Long), and the
methodological approach used to estimate Tmin or Tmax. We used an
Inverse Wishart prior for random and residual terms with V = 1 and nu =
1.002, and a normal prior for fixed effects. We also assessed model out-
puts for qualitatively similar outcomes after specifying a prior to account
for potential correlations among fixed effects and using parameter-expanded
priors for random effects. All Markov-chain Monte Carlo (MCMC) chains were
run with a length of 1,000,000, burnin of 50,000, and thinning interval of 5,000.
This was sufficient to achieve model convergence and avoid temporal autocor-
relation among the posteriors. Deviance information criterion (DIC) was used to
select the best combination of fixed effects.

To address the lack of nonvascular plants in the Slik et al. phylogeny, we
replicated these analyses on the full dataset using a maximum likelihood
approach in lme4 and lmerTest R packages (71, 72). A taxonomic correction
was applied, with separate random effects for higher-order taxonomic
group (e.g., class or unranked higher clade), family, genus, and species, and
additional random effects for growth form, location, and thermal tolerance
assessment methodology as described above. AICc was used for model
comparison. Results of these models were similar to those from the Bayesian
models (SI Appendix, section x).

We further plotted latitudinal variation in Tmin and Tmax against local
values ofmaximum andminimum environmental temperatures (BioClim Bio5
and Bio6) to visually assess latitudinal variation in tolerance to climate ex-
tremes in plants (SI Appendix, Fig. S7).
Global variation in thermal tolerances: Intrinsic, biogeographic, and environmental
drivers. We next partitioned the variation in each of heat and cold tolerance
among factors representing the local environment versus phylogenetic or
spatial distance.Modelswere run inMCMCglmm, implementing fixedeffects of
environmental variables and hardening status, plus phylogenetic and geo-
graphic similarity matrices, and additional random effect terms for tolerance
measurement method and growth form. For the geographic similarity matrix,
we calculated great circle distances using geosphere (73). We then constructed
a Gaussian spatial kernel of the distances, K = e−h*distance^2 (74), with the value
of the tuning parameter (h) determined via optimization (75). For both heat
and cold tolerance, the optimal value for h was 9e-13. To identify climatic
drivers of thermal tolerances, we included temperature (bio1, mean annual
temperature; bio2, diurnal temperature range; bio4, temperature seasonality)
and precipitation (bio12, annual precipitation; bio15, precipitation seasonality)
as fixed effect variables, as well as effects for elevation and distance from the
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coast, which might capture elements of alpine or maritime climates not
reflected in extracted temperature and precipitation qualities. Interactions of
these with hardening status were also tested. The best combination of these
environmental covariates was determined using DIC and significance of ef-
fects. Priors and chain lengths were established as described above. The pro-
portion of variance in heat or cold tolerance explained by fixed effects versus
each random effect in the final models was calculated using the Nakagawa
and Schielzeth approach (76).

Data Availability. Theglobal dataset of plant thermal tolerances generated for and
analyzed within this study is appended to Supplementary Information (Dataset S1).
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