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abstract: Determining the causes of geographic range limits is a
fundamental problem in ecology, evolution, and conservation biology.
Range limits arise because of fitness and dispersal limitation, which
yield contrasting predictions about habitat suitability and occupancy
of suitable habitat across geographic ranges. If a range edge is limited
primarily by fitness, occupancy of suitable habitat should be high, hab-
itat suitability should decline toward the edge, and no suitable habitat
should exist beyond it. In contrast, a range edge limited primarily by
dispersal should have unoccupied but suitable habitat at and beyond
the edge. We built ecological niche models relating occurrence records
for the scarlet monkeyflower (Erythranthe cardinalis) to climatic var-
iables and applied these models to independent data from systematic,
range-wide surveys of presence and absence to estimate the availability
and occupancy of climatically suitable habitat. We found that fitness
limitation predominated over dispersal limitation, but dispersal limi-
tation also played a role at the poleward edge. These results are con-
sistent with the hypothesis that dispersal limitation is more important
along shallow environmental gradients and also suggest that synergy
between dispersal and fitness limitation can contribute to colonization
failure. The framework used here is validated by independent data and
could be readily applied to inferring causes of range limits in many other
species.

Keywords: dispersal limitation, ecological niche model, elevation gra-
dient, latitudinal gradient, species distribution model.

Introduction

Determining why geographic range boundaries arise where
they do—sometimes at seemingly arbitrary places along en-
vironmental gradients (Kirkpatrick and Barton 1997)—is a
fundamental ecological and evolutionary problem. It also
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has tremendous applied relevance, given the ubiquity of
anthropogenically driven changes in species ranges due to
climate change, species introductions, and habitat fragmen-
tation. Hypotheses for range limits fall into two major cat-
egories, fitness limitation and dispersal limitation (Sexton
et al. 2009). Fitness limitation may arise from many proxi-
mate factors, including climatic or other abiotic conditions
(Angert 2006; Eckhart et al. 2011), negative biotic interac-
tions such as competition or predation (Bruelheide and
Scheidel 1999; Jankowski et al. 2010), or a lack of mutualist
partners (Stanton-Geddes and Anderson 2011; Moeller et al.
2012). Range boundaries arise when the single or combined
effects of these limiting variables depress population growth
below replacement rates or increase temporal variability in
population growth and thus increase extinction probabil-
ity (Holt et al. 2005). Dispersal limitation can arise if phys-
ical barriers or the arrangement of suitable habitat hin-
ders colonization of suitable sites beyond the range edge
or by temporal changes in the spatial distribution of limiting
environmental variables, such that colonization lags behind
creation of newly suitable habitat even in the absence of dis-
persal barriers (Gavin and Hu 2006; Hara 2010; Pomara et al.
2014). Determining the relative importance of these classes
of limitation is important for accurately predicting the ways
and rates at which species ranges will shift in response to
perturbations such as climate change (Guisan and Thuiller
2005). For example, dispersal limitation is hypothesized to
be relatively more important at latitudinal range edges com-
pared with elevational edges because of the steepness of un-
derlying environmental gradients (Kirkpatrick and Barton
1997; Hargreaves et al. 2014). For a given dispersal distance,
movement across elevation gradients covers greater environ-
mental distances, resulting in a greater likelihood of popula-
tions at or even beyond the species’ fitness limit. Yet despite
well-established theory and insights from recent syntheses
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(Hargreaves et al. 2014; Lee-Yaw et al. 2016), few studies
have simultaneously assessed causes of range limits across
elevational and latitudinal gradients for the same species.

Experimental manipulations of the species distribution
or putatively limiting environmental variables provide the
most definitive tests for fitness and dispersal limitation. For
example, if experimentally translocated individuals achieve
stable or increasing population growth rates beyond a range
boundary, then the range can be inferred to be dispersal lim-
ited (Marsico andHellmann 2009; Van der Veken et al. 2012).
On the other hand, if experimental populations have nega-
tive population growth rates, then the range boundary is fit-
ness limited (Levin and Clay 1984; Angert and Schemske
2005; Geber and Eckhart 2005). However, inadequate spa-
tial or temporal replication and incomplete representation
of the life cycle can yield misleading results (Sexton et al.
2009; Hargreaves et al. 2014; Lee-Yaw et al. 2016). Further,
experimental manipulations are impractical or impossible
for most organisms. Given these difficulties, approaches that
rely on observational data to test for fitness and dispersal
limitation would be a broadly applicable alternative to ma-
nipulative experiments.

Here we test for fitness and dispersal limitation using spa-
tial variation in modeled habitat suitability and observed oc-
cupancy of suitable habitat. In principle, if a range boundary
is created primarily by dispersal limitation, habitat suitabil-
ity should remain high at and beyond the range boundary,
but the species will fail to occupy it (table 1). Conversely, if
a range boundary is created primarily by fitness limitation,
then habitat suitability should decrease toward the range
edge and suitable habitat should be greatly reduced beyond
it, but the species will occupy suitable habitat where it is
available (table 1). Spatial variation in habitat suitability
can be inferred from ecological niche models (ENMs; Peter-
son 2006; Warren 2012), which relate records of occurrence
to environmental predictors (Elith and Leathwick 2009). Oc-
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cupancy of suitable habitat can then be assessed using inde-
pendent occurrence data with presence and absence records.
We apply this approach to test the relative importance of

fitness and dispersal limitation at elevational and latitudinal
range limits of the scarlet monkeyflower (Erythranthe car-
dinalis, formerly Mimulus cardinalis; Nesom 2014), a per-
ennial herb of riparian habitats in western North America.
Erythranthe cardinalis has conspicuous red flowers, mak-
ing it easily identifiable, so false absences are unlikely when
field surveys occur during the flowering season. Riparian
habitat is linear and easily surveyed when accessible. The
species has been the subject of several other investigations
of range-limiting processes across both elevational and lat-
itudinal gradients (Angert and Schemske 2005; Angert 2006;
Angert et al. 2008, 2011; Bayly 2015; Sheth and Angert 2016,
2017), which aids interpretation of these results. In this study,
we build ENMs, focusing on elements of the climatic niche,
and apply these models to powerful independent testing data
with true absences from systematic field surveys. Inferences
regarding suitable habitat and its occupancy are conducted
on the testing data, overcoming many limitations of infer-
ences made from presence-only data (Hastie and Fithian
2013).

Material and Methods

Study System

Erythranthe cardinalis is a perennial herb of riparian hab-
itats ranging from central Oregon, southward throughout
California (although it is absent from the Central Valley),
and into northern Baja California, Mexico (Thompson 1993).
Some herbarium specimens labeled E. cardinalis have been
collected in Arizona and northern Mexico. Disjunct Arizo-
nan populations have reproductive incompatibilities with
Californian populations (Hiesey et al. 1971; Vickery and
Wullstein 1987), cluster into well-supported sister clades
Table 1: Conceptual framework and statistical tests for distinguishing dispersal from fitness limitation as primary causes of range
edges by examining differences in habitat suitability and occupancy of suitable habitat between the range center (C) and edges
(E) and summary of corresponding results for four range edges of Erythranthe cardinalis
Variable
Predictions
Tests
H
e
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(Beardsley et al. 2003), and were recently split as Erythranthe
cinnabarina (Nesom 2014). In addition, putative specimens
of E. cardinalis from Mexico share morphological charac-
teristics with Erythranthe verbenaceus (S. N. Sheth, personal
observation) and are frequently misidentified (P. Beardsley,
personal communication). Because of this taxonomic uncer-
tainty, and because we could not conduct our own field sam-
pling in Mexico, we focus on the main species range in Cali-
fornia and Oregon. Within this geographic range, the species
occurs at 0–2,400 m, although maximum elevation declines
to the north (Ramsey et al. 2003).
Occurrence Points

Training Data: Herbarium Records and Pseudoabsences.
We downloaded georeferenced records of occurrence from
the Consortium of CaliforniaHerbaria and theOregon Flora
Project on November 18, 2013. These records were supple-
mented with 200 additional records from seed and tissue col-
lections made incidentally during other field projects from
1999 to 2009 (A. L. Angert, unpublished data), yielding 880
records. After inspection and cleaning (see app. A; apps. A–
D are available online), we retained 432 records (available
in the Dryad Digital Repository: http://dx.doi.org/10.5061
/dryad.bg15b [Angert et al. 2018]). Tominimize spatial bias,
we used OccurrenceThinner v1.0.4 (Verbruggen 2012; Ver-
bruggen et al. 2013) to thin out overly sampled regions (app. A),
resulting in 10 pseudoreplicate sets of records (N p 187–
204; fig. A1; figs. A1–A3, C1–C4, S1–S7 are available online).

Using the R package dismo version 1.0–12 (Hijmans et al.
2015), we generated random pseudoabsences within donut-
shaped buffers (outer radius 80 km, inner radius 600m) sur-
rounding presence records from each set of thinned records.
The outer radius constrained pseudoabsences to the vicin-
ity of sampled areas, while the inner radius avoided plac-
ing pseudoabsences in occupied areas. In preliminary work,
we tested varying outer radii and elimination of inner radii,
and results were qualitatively similar.We further constrained
the sampling of pseudoabsences by elevation and ecoregion
to avoid drawing pseudoabsences from extremely inappro-
priate habitat, and so the environmental space encompassed
by pseudoabsences represented that of true absences (fig. A2).
For each set of thinned presence records, we used the same
number of pseudoabsences (1∶1 ratio) because it is close
to actual prevalence observed in the testing data set (40%;
Lauzeral et al. 2013), and exploratory analyses showed that
higher ratios tended to result in overfitting of the training
data (i.e., large drops in metrics of model performance when
applied to independent testing data). However, our major
conclusions are insensitive to the ratio.

Testing Data: Systematic Surveys of Presence and Absence.
We conducted field surveys in June–August 2010 and 2011,
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when flowering plants were conspicuous. Survey locations
were determined by a stratified, random design, with strata
defined by climate and latitude (app. A).We varied the sam-
pling order of strata between years (app. A). At each loca-
tion, we searched for E. cardinalis along two 30-m transects
following the waterway. Because environmental predictors
were not fine-scaled enough to differ between transects, we
combined observations from the two transects into one data
point; if E. cardinalis was observed along either transect, the
site was treated as a presence. At six sites, we observed indi-
viduals between transects when there were no recorded indi-
viduals along either transect; these sites were analyzed as
presences. In total, we visited 240 sites and found E. cardi-
nalis at 90 of these (available in theDryadDigital Repository:
http://dx.doi.org/10.5061/dryad.bg15b [Angert et al. 2018]).
Predictor Variables

We focus on climatic factors for two reasons. First, prior re-
search on this study species has identified growing season
temperature as a major determinant of both fitness and dis-
tribution (Angert 2006; Angert et al. 2008, 2011). Also, in
exploratory analyses, microhabitat variables related to hy-
drology and topography had undetectable to weak effects
on probability of occurrence and were rarely selected for
model inclusion, while climatic variables had strong effects
and were always selected for model inclusion.

Source of Climatic Variables. We obtained point-specific
monthly values of maximum temperature, minimum tem-
perature, and precipitation from ClimateWNA version 5.21
(http://cfcg.forestry.ubc.ca/projects/climate-data/climatebcwna/;
Wang et al. 2012). Elevation values were derived from theUS
Geological Survey (USGS) HydroSHEDS digital elevation
model with a 90-m resolution (Lehner et al. 2008). For each
training presence record and testing data point (presences
and true absences), we created a point-specific climatic aver-
age for each monthly variable across the 30 years preceding
the point’s collection date. For the pseudoabsences, which do
not have a true date of collection, we calculated climatic aver-
ages across the distribution of collection years in the herbar-
ium records. From these data we calculated 19 bioclimatic
variables (Hijmans et al. 2005) at a resolution of 90 m using
the biovars function from the R package dismo version 1.0–
12 (Hijmans et al. 2015).

Culling of Predictor Variables. We selected a subset of bio-
climatic variables with the greatest explanatory power in
univariate linear models and without strong collinearity
(r ≤ j0:7j; table B1; tables A1, B1, C1, C2, D1, D2, S1–S4
are available online). This resulted in retention of seven
variables: precipitation seasonality (bio15), precipitation of
driest month (bio14), annual precipitation (bio12), mean
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temperature of coldest quarter (bio11), mean temperature of
warmest quarter (bio10), temperature seasonality (bio4),
isothermality (bio3), and mean diurnal range (bio2). Bio3,
bio10, bio12, and bio14 were natural log transformed before
analyses.
Ecological Niche Model Building

We used five widely used ENMs to ensure that results were
not sensitive to choice of models and their respective pa-
rameterizations. They encompass parametric (generalized
linear models [GLMs]), semiparametric (generalized ad-
ditive models [GAMs]), and nonparametric approaches
that incorporate machine learning (random forests [RFs],
boosted regression trees [BRTs], and maximum entropy
[MAX]). Analyses were conducted in R version 3.0.2 using
code generously shared by T. Edwards (Utah State Univer-
sity). Further details on ENM building are available in ap-
pendix A.
Model Evaluation

To assess overall model performance, we considered both
discrimination (the ability to correctly distinguish between
presences and pseudoabsences) and reliability (the agree-
ment between predicted and actual probabilities of occur-
rence; Pearce and Ferrier 2000). We assessed discrimina-
tion with the area under the curve (AUC) of the receiver
operator characteristic (Fielding and Bell 1997). To assess
reliability, we examined Miller’s calibration statistics (Miller
et al. 1991) for the calibration curve, which relates observed
probabilities of occurrence to model predictions. For exam-
ple, in a well-calibrated model, sites with predicted values
of 0.2 versus 0.8 will be occupied 20% versus 80% of the
time, respectively. For a perfectly calibrated model, the logis-
tic regression of observed presence/absence versus the logits
of predicted probabilities will have an intercept of 0 and a
slope of 1 on the log odds scale. We tested for deviation
from perfect calibration by conducting likelihood ratio tests
of models with intercept and slope constrained to equal 0
and 1, respectively, versus unconstrained models, using an
R function from Wintle et al. (2005). Significant deviations
in intercept alone suggest bias in model predictions, mean-
ing observed prevalence in real data is significantly higher
(intercept 1 0) or lower (intercept ! 0) than model predic-
tions across the entire range of predicted values (Pearce and
Ferrier 2000). Significant deviations in slope (spread) with-
out bias indicate that the model is overpredicting (slope 1 1)
or underpredicting (slope ! 1) prevalence when predicted
values are 10.5 and doing the opposite for predicted values
!0.5 (Pearce and Ferrier 2000). Significant deviations in both
slope and bias shift the predicted value at which the cross-
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over from over- to underprediction occurs. All performance
metrics were calculated for both training data (internal vali-
dation) and independent testing data (external validation).
For GLM, GAM, BRT, andMAXmodels, internal accuracies
were calculated using the entire training data set (resubsti-
tution) and with a fivefold cross-validation procedure. For
RF, we report internal accuracy as the out-of-bag estimate
from the training data set, which is analogous to a cross-
validated estimate.
Hypothesis Testing

We tested whether habitat suitability is lower at range edges
in two ways (table 1). First, we divided the testing points
into central versus edge groups (defined below; fig. A3) and
comparedmodel prediction scores among groups via ANOVA.
Second, we conducted second-order polynomial regressions
of model predictions versus latitude or versus elevation of
each testing data point. We used the former categorical ap-
proach because it offered a straightforward contrast between
range center and range edges, andwe included the latter con-
tinuous approach to ensure that the binning of data into cat-
egories was not obscuring more complex patterns. Latitudi-
nal groups were assigned on the basis of US Environmental
ProtectionAgency level 3 ecoregions (table A1). Results were
not altered by using alternate breakpoints between groups
(app. A). Elevational groups were assigned on the basis of a
prior reciprocal transplant experiment (Angert and Schemske
2005): !400 m p low margin, 400–1,200 m p center, and
11,200 mp high margin. For regressions, we analyzed pres-
ences and absences separately to determine whether average
trends were driven by variation across occupied or unoccu-
pied sites.
To test whether suitable habitat is present beyond range

edges, we first defined a threshold above which sites could
be considered suitable (table 1). We chose the threshold
that maximizes the sum of sensitivity and specificity (calcu-
lated on the testing data) because this has been demonstrated
to performwell comparedwith others (Liu et al. 2013). How-
ever, results are qualitatively similar using a different thresh-
old, maximum kappa (Cohen 1960). We clipped model pro-
jections to waterways using the USGS National Hydrography
Dataset’s stream feature layers for California and the Pacific
Northwest (McKay et al. 2012).We also limited the spatial ex-
tent to within an 80-km buffer surrounding presence records
to avoid summarizing suitable habitat within a rectangle con-
taining obviously unsuitable areas (e.g., ocean). For each
model type, we examined histograms of the summed length
of climatically suitable stream habitat versus latitude or el-
evation. Because maximum elevation declines with latitude,
we examined latitudinal histograms within low-, mid-, and
high-elevation classes; likewise, we examined elevational
histogramswithin south, central, and north regions. Because
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the low-elevation range limit is 0 m asl, we could not exam-
ine suitable habitat beyond this range edge.

To test whether occupancy of suitable habitat declines to-
ward range edges, we conducted logistic regressions of pres-
ence or absence in suitable sites (i.e., only those sites above
the suitability threshold) versus latitude or elevation. We
predicted that probability of occurrence would have a hump-
shaped relationship with range position if dispersal limita-
tion prevents populations from occupying suitable sites near
range edges.
Nonstationarity and Extrapolation

To assess the potential for nonstationarity (i.e., the effects of
predictor variables changing across space), we compared re-
sults from GLMmodels with and without terms for climate-
by-latitude or climate-by-elevation interactions (app. C). To
explore whether projections beyond the range required ex-
trapolation into novel environmental space, we used the ExDet
Tool version 1.0 (Mesgaran et al. 2014) to visualize novel en-
vironments across the landscape. ExDet reveals whether
projections are applied beyond the ranges of individual pre-
dictor variables or into places with novel correlation struc-
ture among predictor variables, even if still within their
univariate ranges. Multivariate novelty is based on Mahala-
nobis distance to the edge of the multivariate distribution of
the reference (background) data (e.g., for two variables, the
edge of the ellipse surrounding correlated points); this metric
ranges from zero to positive infinity, with values greater than
one considered significantly novel.
Results

Model Evaluation

All model projections matched the Erythranthe cardinalis
distribution well, although models differed in the degree
of under- or overprediction in various regions (fig. 1). All
models did better than random (AUC 1 0:5) in discriminat-
ing presences from absences, with an average cross-validated
AUC of 0.77 across model types. Further description ofmodel
accuracy and reliability is in appendix D.
Differences in Climatic Suitability from Range
Center to Range Edges

Results for hypothesis tests about climatic suitability and
occupancywere qualitatively similar for allmodels. For sim-
plicity we feature GAM and RF results here because they
both performed well (app. D) and represent different model
types; GLM, BRT, andMAX results are in the supplemental
material, available online.
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Latitude. For all model types, average suitability differed
among latitudinal regions (table S1). Suitability was signifi-
cantly lower at the northern range margin compared with
the range center but did not differ between the southern range
margin and range center (figs. 2, S1; table 1). Althoughmean
suitability of the southern regionwas high, this was driven in
large part by highly suitable sites in the Transverse Moun-
tain Ranges at ∼347N (figs. 3, S2). For all model types, suit-
ability of both occupied and unoccupied sites had a signifi-
cant quadratic relationship to latitude, although R2 ranged
from only 0.07 to 0.27 (table S2). Predicted suitability of both
site types peaked near or just south of the latitudinal range
center (table 1). In some models, predicted suitability de-
clined more strongly toward the northern range edge than
toward the southern range edge (figs. 3, S2).

Elevation. Average suitability differed among elevational re-
gions for all model types (table S1). Suitability was highest at
the mid-elevation range center, significantly lower at the low-
elevation range edge, and lowest at the high-elevation range
edge (figs. 2, S1; table 1). Suitability of occupied sites had a sig-
nificant quadratic relationship to elevation, with R2 ranging
from 0.11 to 0.35 (table S2). Predicted suitability of occupied
sites peaked near or slightly below the elevational range center
and declined strongly toward higher elevations (figs. 3, S2; ta-
ble 1). Suitability of unoccupied sites tended to decreasemore
linearly with elevation (table S2; figs. 3, S2).
Suitable Habitat beyond Range Edges

When projections were classified on the basis of the suit-
ability threshold and clipped to appropriate riparian micro-
habitat, very few climatically suitable stream reaches were
detected in the lowest- and highest-latitude bins (figs. 4, S3;
table 1). No stream reaches were modeled as suitable above
the high-elevation edge (figs. 4, S3; table 1). Suitability was
high at low elevations but only in the central latitudinal region
(figs. 4, S3; table 1). Visualization of environmental dissimi-
larity showed that the risk ofmodel extrapolation to novel en-
vironments beyond range edges was low (fig. S4).
Spatial Variation in Occupancy of
Climatically Suitable Habitat

Latitude. Logistic regressions of presence/absence versus lat-
itude among sites above the suitability threshold suggested
decreasing occupancy of suitable sites in the north (figs. 5,
S7; tables 1, S4). The probability of presence in suitable sites
declined from south to north for all five model types. This
inference is supported by calibration curves fit to regional
subsets of data (supplemental material; table S3; figs. S5, S6).
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Elevation. Logistic regressions of presence/absence versus
elevation among only those sites above the suitability thresh-
old had significant quadratic terms for BRT andMAXmod-
els, suggesting decreasing occupancy of suitable sites at low-
and high-range edges (fig. S7; table S4). However, thesemodels
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had among themost severe calibration problems,making them
least reliable for inferences about occupancy (app. D). In con-
trast, logistic regressions showed no changes in occupancy of
suitable sites for GLM, GAM, and RF models (figs. 5, S7).
The inference that occupancy of highly suitable sites does
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Figure 1: Spatial distribution of habitat suitability based on average predictions from generalized linear models (GLMs; A), generalized ad-
ditive models (GAMs; B), random forests (RFs; C), boosted regression trees (BRTs; D), and MaxEnt (MAX; E). Green indicates areas of
highest suitability.
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not differ across elevation is supported by calibration curves
fit to regional subsets of data ((supplementalmaterial; table S3;
figs. S5, S6).
Nonstationarity in Effects of Climatic Variables

We detected many significant interactions between biocli-
matic variables and latitude or elevation (app. C), suggest-
ing that the effect of climate on the probability of presence
varies across the range. However, GLM models including
interactions with latitude or elevation had only slightly higher
AUC scores and yielded qualitatively similar patterns of spa-
tial variation in suitability and occupancy (app. C).
Discussion

We used inferences from ENMs (table 1) to examine the
relative importance of fitness and dispersal limitation at dif-
ferent spatial scales across the range of the perennial herb
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Erythranthe cardinalis. We found a predominant role for
fitness limitation, which is in line with recent meta-analyses
(Hargreaves et al. 2014; Lee-Yaw et al. 2016). Compared with
the range center, modeled climatic suitability was lower at
and beyond edges. Nonetheless, there was evidence consis-
tent with dispersal limitation at the northern range edge,
where suitable habitat was less likely to be occupied com-
pared with the range center. These results suggest that dif-
ferences in the steepness of underlying environmental gra-
dients result in greater dispersal limitation at latitudinal range
edges (and particularly poleward edges) compared with eleva-
tional edges (Kirkpatrick and Barton 1997; Hara 2010; Har-
greaves et al. 2014).
Relative Importance of Fitness and Dispersal
Limitation Depends on Spatial Scale

Theory predicts that the interplay of dispersal and gradient
steepness determines range limits along environmental gra-
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Figure 2: Modeled suitability by latitudinal or elevational region. A, Generalized additive model (GAM) by latitudinal region. B, GAM by
elevational region. C, Random forest (RF) model by latitudinal region. D, RF by elevational region. Black horizontal lines show medians, gray
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dients because of their combined effect on environmental
distance traversed (Kirkpatrick and Barton 1997; Polechová
and Barton 2015). Along steep gradients, dispersal from suit-
able sites will continually introduce propagules to unsuit-
able sites, where selection will weed them out or, with high
enough migration, they can persist in sink populations. Thus,
when gradients are steep relative to dispersal distances, ranges
are expected to match or even exceed niches. Conversely,
along shallow gradients, ranges are more likely to fall short
of niche limits because it takes more dispersal events to
reach unsuitable habitat, particularly if temporal environ-
mental changes occur faster than propagules can track. In
ameta-analysis of over-the-edge transplant experiments, Har-
greaves et al. (2014) found support for these predictions;
demographic sinks were more likely beyond elevational than
latitudinal edges, and there were no observed cases where
latitudinal range edges exceeded niche limits. However, sam-
ple sizes for these comparisons were low, and comparisons
of latitude and elevation were made across different spe-
cies, regions, and time periods. This study reinforces these
inferences with a systematic comparison of latitude and el-
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evation within the same study system. Our comparison is
strongest for the northern latitude versus high-elevation con-
trast, which did not suffer from any of the sampling limita-
tions that affected inferences about the southern latitude ver-
sus low-elevation contrast.
Fitness and Dispersal Limitation Can Act Synergistically

Mechanisms for range limitation are not mutually exclu-
sive, and there is potential for interesting synergy between
them. Likewise, decreasing occupancy of suitable habitat in
a metapopulation system could result from gradients in hab-
itat suitability, extinction risk, or colonization rates (Holt and
Keitt 2000). For example, deteriorating habitat suitability could
contribute to dispersal limitation via a declining number or
quality of propagules (Munzbergova and Herben 2005) or
increasingly smaller and more isolated habitat patches (Holt
and Keitt 2000). In the former case, fitness limitation is ar-
guably the root cause of colonization failure. These interactions
could have compounding effects on site occupancy, particu-
larly for species with Allee effects. Svensson (1992) speculated
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that declining occupancy of three water beetle species at
their range edges was due to low abundance and prevalence
of source populations for colonization. In this system we
found low occupancy of suitable habitat at the northern range
edge, which is consistent with dispersal limitation, but ENM
also predicted low habitat suitability, as would be expected
under fitness limitation. Further study is required to disen-
tangle how reduced occupancy arises from limited dispersal,
low habitat quality, and/or low fitness (e.g., that elevates ex-
tinction risk). Our results call for increased research empha-
sis on interactions between fitness and dispersal limitation
rather than treating them as a simple dichotomy.
Likelihoods of Fitness and Dispersal Limitation

Our results support the hypothesis that fitness limitation is
most likely when dispersal has allowed a species to sample
many environments and reach the edges of its niche. This
likelihood is determined by dispersal ability, which is po-
sitively related to range size across many taxa (Lester et al.
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2007; Strona et al. 2012), and time. For example, recently in-
troduced species are unlikely to have reached niche limits,
and in many groups exotic range extent increases with time
since introduction (e.g., Dyer et al. 2016). Over evolutionary
timescales, range size increases with species age (Paul et al.
2009), suggesting that older native species are more likely
to have reached the limits of their potential distributions.
Conversely, dispersal limitation ismost likely when environ-
mental fluctuations exceed a species’ time and ability to
track them via dispersal. In the Northern Hemisphere, dis-
persal limitation is more likely for species whose ranges ex-
tend further northward into areas that have been most im-
pacted by both past glaciation (Svenning et al. 2008) and
recent rapid warming (IPCC 2013). Dispersal limitation
could be compounded by physical geography. For example,
the east-west orientation of major Eurasianmountain ranges
could pose a greater dispersal barrier to northward range ex-
pansion than in North America, where major ranges are ori-
ented north-south (Brown 1995). Nonetheless, we found a
role for dispersal limitation even for a species of midlatitudes
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in western North America, suggesting that dispersal limita-
tion could play a pervasive role even when fitness limitation
is also operating.
Applying Niche Models to Infer Causes of Range Limits

ENMs can be highly sensitive to methodological choices,
such as how pseudoabsences are selected (Hertzog et al.
2014), their spatial extent (Barve et al. 2011), and their ratio
to presences (Barbet-Massin et al. 2012). We examined the
sensitivity of our results to these choices and found that
downstream conclusions about habitat suitability and oc-
cupancy were unaffected.We also employed an array of dif-
ferent ENM types with contrasting strengths and weak-
nesses, and our conclusions were robust to the underlying
model type. An independent testing data set with constant
detection probability and true absences enabled us to eval-
uate overfitting and conduct strong hypothesis tests, which
is rare in most niche and distribution modeling applica-
tions.

Nonetheless, ENM inferences rely on obtaining ecologi-
cally relevant predictor variables at an appropriate spatial
resolution. For example, if fitness at a range edge is limited
by a biotic interaction such as competition, then ENMs built
with only climatic variables could yield erroneous conclusions,
unless the outcome of biotic interactions covaries reliably
with climatic predictors (Taniguchi and Nakano 2000; Lee-
Yaw et al. 2016; Godsoe et al. 2017). Biotic interactions are
posited to have greater importance at low-latitude and low-
elevation range edges, although empirical evidence is sparse
(Louthan et al. 2015). Alternatively, biotic interactions might
exclude species from local patches idiosyncratically (i.e.,
Eltonian noise hypothesis; Soberón and Nakamura 2009).
However, Lee-Yaw et al. (2016) suggested that climatic suit-
ability predicts fitness limitation for most species and that
if climate is operating indirectly via biotic interactions, then
it is doing so at a coarse scale. Despite the overwhelming
focus in the ENM literature on climatic predictor variables,
it is possible to incorporate biotic interactions (Kissling et al.
2012; Anderson 2017). Previous studies have investigated
the influence of key competitors (e.g., Meineri et al. 2012),
facilitators (e.g., Heikkinen et al. 2007), resources (e.g., Free-
man and Mason 2015), or predators (e.g., Kosicki et al. 2016)
on ENM predictions, often finding substantial model im-
provement from their inclusion. Logistically, this is imple-
mented by constraining ENM predictions to the range of
the key interactor or adding as predictors their presence/
absence, abundance, or probability of occurrence (Kissling
et al. 2012; Anderson 2017). The latter is generalizable to
entire assemblages (e.g., competitors: Meier et al. 2010; in-
sects and host plants: Pellissier et al. 2013; plants and soil
microbes: Bueno de Mesquita et al. 2015). Similarly, it is also
possible to include microhabitat characteristics such as chem-
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ical and physical characteristics of the local substrate (e.g.,
Gies et al. 2015). Thus, the framework used in this article
can be extended to species whose natural history dictates
the inclusion of nonclimatic predictor variables.
For E. cardinalis, other lines of evidence bolster infer-

ences about fitness and dispersal limitation. Prior work sug-
gests an overriding effect of temperature and no role for
competition with a parapatrically distributed relative, at least
with respect to elevation range limits (Angert and Schemske
2005; Angert 2006). Fitness limitation at the high-elevation
edge is validated by three independent field translocations
(Hiesey et al. 1971; Angert and Schemske 2005; Angert et al.
2008). Similarly, dispersal limitation at the northern edge is
validated by a transplant experiment in which experimental
populations beyond the northern edge had projected pop-
ulation growth rates 11 (Bayly 2015). Population genetic
data show that northern populations are on average youn-
ger and have lower heterozygosity than central and south-
ern populations (J. R. Paul, T. Parchman, A. Buerkle, and
A. L. Angert, unpublished manuscript), as expected for an
expanding range edge (Excoffier 2004). Finally, demographic
observations of natural populations reveal that southern pop-
ulations have low mean fitness (l ! 1) while northern pop-
ulations are stable or increasing (l ≥ 1; Sheth and Angert
2017).
Genetic differentiation and local adaptation across a geo-

graphic range can lead to intraspecific variation in climate
relationships (e.g., Angert et al. 2011). Also, some species
become habitat specialists at the range edge, leading to nar-
rower niche breadth (Svensson 1992; Avila-Flores et al.
2010). Failure to account for such variation (i.e., nonsta-
tionarity) could lead to poor model fit at the range edge,
particularly if records are more sparse, leading to false in-
ferences of declining suitability or low occupancy. In this
study, suitability scores spanned a similar range of variation
in the north as at the range center (fig. 3). Also, we com-
pared results for models with and without interactions be-
tween climatic variables and latitude or elevation. Critically,
although significant interactions often existed, their incor-
poration did not change inferences about decreases in cli-
matic suitability and occupancy toward range edges. This
is especially important given our truncated sampling at
the southern range edge; for the lack of sampling there to
bias our interpretations, one would have to invoke a sudden
spike in nonstationarity in Baja California, departing from
that observed across much larger spatial and environmental
differences. Hothorn et al. (2010) proposed a method for
integrating estimation of nonstationarity into traditional
distribution models, which could be a promising avenue
for future studies.
ENMs have been used previously to infer nonclimatic

limitation of geographic ranges. Approaches include iden-
tifying areas where models predict high suitability yet the
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species is not observed (e.g., Graham et al. 2010), relating
range filling to dispersal ability or the presence of congeners
(Laube et al. 2013), relating model fit to dispersal ability
(Kharouba et al. 2013), and testing whether adding spatial
filters (Cardador et al. 2014) or dispersal costs (Algar et al.
2013) improvesmodel fit. Species that will bemost amenable
to future investigations of habitat suitability and occupancy
are those for which systematic, range-wide field surveys are
possible, that occur in regions with high-resolution environ-
mental layers, and whose natural history is known well
enough to identify key nonclimatic variables (e.g., edaphic
characteristics or interacting species). For mobile, cryptic,
or ephemeral species, an important additional consider-
ation is detectability, which influences false absences and
might require temporally replicated sampling. Systematic
surveying and modeling efforts will help account for spatial
heterogeneity in limiting factors and reveal potential inter-
actions between fitness and dispersal limitation. Ultimately,
this will improve our understanding of range limitation and
aid projections of climate-induced range shifts.
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