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Premise of research. Phylogenetic comparativemethods provide a powerful approach for exploring themac-
roevolution of plant functional traits. Such approaches can uncover trait-trait correlations through evolutionary
time as well as provide evidence of the role of traits in adaptation across environmental gradients. For continuous
traits, most phylogenetic comparative approaches to date employ a single trait value per species—often amean of
sampled individuals—or alternatively incorporate intraspecific variation as a distribution around such amean. It
has been known for quite some time that many of themost physiologically and ecologically important plant traits
are actually highly plastic, changing dynamically across a growing season, with whole-plant development or in
response to environmental conditions. Here we demonstrate one possible approach to assessing the evolution of
such dynamic traits: the use of function-valued phylogenetic comparative methods.

Methodology. Leaf traits were sampled across 25 taxa in the genusCornus at six time points throughout the
growing season in a common-garden context, followed by contrasting sets of alternative analyses to demonstrate
the consequences of researcher decisions on study conclusions.

Pivotal results. The vast majority of assessed traits exhibit substantial seasonal shifts. These shifts cause tra-
ditional macroevolutionary correlations assessed at different sampling dates to yield conflicting results. Function-
valued approaches indicate that seasonal shifts in many traits are evolutionarily correlated, with implications for
the origin of trait-trait trade-offs. Seasonal trait plasticity is also evolutionarily correlated with native habitat en-
vironmental gradients across Cornus.

Conclusions. Because a very large number of plant functional traits are not fixed but vary dynamically over
time or with environmental conditions, stronger insights into the evolution of plant functional traits can emerge
when this dynamism is explicitly incorporated into phylogenetic comparative approaches. We encourage the
adoption of such approaches, as well as the development of better tools for doing so.
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Introduction

As highlighted in this journal over 15 years ago, the unifica-
tion of plant ecophysiology with evolutionary biology requires
understanding the role of plant functional traits in adaptation
to diverse environments, including traits that are phenotypically
plastic (Ackerly andMonson 2003). Over the past few decades,
phylogenetic comparativemethods have become one of themost
effective approaches for understanding the macroevolution of
functional traits, with substantial progress in the development
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and deployment of rigorous statistical methods for assessing the
macroevolution of traits in relation to one another (e.g., suites
and trade-offs sensu Reich et al. [2003]) and the abiotic and
biotic environment (Felsenstein 1985; Martins and Hansen 1997;
Garamszegi 2014). Such approaches allow for the explicit test-
ing of hypotheses about the adaptive value of functional traits,
with the repeated evolution of a focal trait in relation to other
traits or environmental conditions interpreted as at least partial
evidence of the response of that trait to selective pressures (Har-
vey and Pagel 1991; Weber and Agrawal 2012).

While the use of phylogenetic comparative methods has be-
come widespread, until recently the most accessible and com-
monly used methods relied on the use of species mean values
for traits (Martins and Hansen 1997) or else the representation
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of intraspecific trait variation as a distribution estimated around
a mean value (Ives et al. 2007; Felsenstein 2008), with little way
to explicitly incorporate the behavior of dynamic traits that
change over time or in response to growing conditions. In our
view, this has served as a roadblock for progress in understand-
ing the evolution of plant functional traits, as many of the traits
most recognized to play important roles in plant ecology are not
fixed traits with unitary values for different species but instead
highly dynamic traits that exhibit plastic responses to environ-
mental conditions or large shiftswith development (Stinchcombe
et al. 2012; Donovan et al. 2014; Chitwood and Topp 2015;
Leal et al. 2017). The timescales that are involved vary dramat-
ically, from seconds to decades. At the very rapid end of the spec-
trum, consider the response of photosynthesis to changing light
levels or the inducible upregulation of chemical defenses under
pest or pathogen attack. At an intermediate timescale, consider
the response of plant biomass allocation to changing soil mois-
ture conditions or the response of phenological traits to differ-
ences in photoperiod or temperature. At the very slow end of the
spectrum, consider the difference in the construction and makeup
of plant organs in small seedlings versus adult trees. Furthermore,
inmany cases differences in these plastic responses among species
are highly likely to play a role in adaptation. For instance, while
photosynthesis can be summarized as a univariate trait (e.g.,
maximum assimilation rate), it has long been understood that
differences in the response of photosynthesis to abiotic condi-
tions (i.e., light response curves, A/Ci curves) represent adap-
tive differences among species—for example, sun-adapted versus
shade-adapted plants (Boardman 1977; Givnish et al. 2004)—
or the resilience of photosynthetic pathways to heat or drought
(Wullschleger 1993;Huxman andMonson 2003). The adaptive
importanceof plasticityholds formanyother classes of plant func-
tional traits, including those governing water relations (e.g., sto-
matal responses, osmotic adjustment; Chaves et al. 2003; Bartlett
et al. 2012), nutrient relations (e.g., transporter upregulation, root
exudates, mineral resorption; Kudoyarova et al. 2015;Maillard
et al. 2015; Bowsher et al. 2016), plant defense (e.g., induc-
tion under attack, differential investment given resource avail-
ability; Koricheva et al. 1998; Burghdardt 2016), and certainly
many others.

The recent development of function-valued approaches now
allows for the explicit incorporation of this trait plasticity into
phylogenetic comparative methods, although there are at pres-
ent a limited but growing selection of methods for handling such
data (see Guo et al. 2007; Hadjipentalis et al. 2013; Goolsby
2015; Clavel et al. 2018). The function-valued perspective on
plastic traits was developed for use largely inmicroevolutionary
and genetic studies (e.g., Kingsolver et al. 2001; Kingsolver and
Gomulkiewicz 2003; Izem and Kingsolver 2005; Stinchcombe
et al. 2012) and has only recently begun to be adapted for use
at the macroevolutionary scale. These emerging phylogenetic
comparative approaches allow for the ancestral state reconstruc-
tion of polynomial functions or other curve-like representations
of how traits change in response to an exogenous factor, such as
time or an environmental variable. The consideration of trait
shifts or responses to such exogenous factors has several advan-
tages over univariate approaches, including higher statistical
power, improved robustness to missing data and the ability to
estimate missing trait values with higher confidence, and the ex-
plicit inclusion of the magnitude and directionality of trait re-
sponses (Kingsolver et al. 2001; Goolsby 2015). Despite these
advantages, these methods have to date been primarily aimed
at ancestral state reconstruction of curves, and there is not yet
a clear set of best practices for incorporating function-valued
traits when making statistical inferences about correlated trait
evolution and the tempo and mode of trait evolution. Given
the diverse nature of plastic traits, there is unlikely to be a one-
size-fits-all solution for all applications and questions, but the
family of function-valued methods represents an opportunity
for more direct assessment of the evolution of trait plasticity.
With innovations in high-throughput phenotyping and the
emerging capacity to ask questions about the evolution of trait
plasticity at scale (e.g., Stinziano et al. 2017; Silva-Perez et al.
2018), we are in desperate need of parallel innovation in analyt-
ical approaches.
The goal of this article is to introduce readers to function-

valued approaches in the hope of stimulating both analytical de-
velopment and the broader incorporation of these approaches
into empirical studies. Here we demonstrate the utility of function-
valued approaches to exploring the evolution of plasticity in func-
tional traits. Specifically, we assess the macroevolution of seasonal
shifts in leaf ecophysiological traits across the genus Cornus (com-
monly referred to as dogwoods, cornels, and osiers), exploring
how incorporating within-individual plasticity in multiple traits
allows for improved inference of the nature of trait-trait trade-
offs at multiple scales (e.g., intraindividual and macroevolution-
ary), as well as improved understanding of the evolution of trait
plasticity with native habitat environment.

Material and Methods

Study System and Sampling

The genus Cornus contains approximately 50 species (Xiang
et al. 2006; The Plant List 2013) that vary widely in growth
form. These include creeping herbaceous species; dwarf ground-
covering shrubs; large, aggressively spreading rhizomatous shrubs;
and trees ranging from small understory species to a few larger
canopy trees (Xiang et al. 2006). This genus is quite old, dating
to the late Cretaceous (Atkinson et al. 2016; Yu et al. 2017),
and these species have diversified into habitats ranging from
the subtropics to the Arctic (Xiang and Thomas 2008). In addi-
tion to wide variation in soil conditions and average climate,
such habitats also strongly vary in seasonality, with growing-
season lengths ranging from just a few months to year-round.
To investigate leaf trait evolution in this group of diverse species,
we employ a phylogenetic comparative approach coupled with
common-garden phenotyping.
Twenty-five taxawithin the genusCornuswere studiedwithin

the living collections of the Arnold Arboretum of Harvard Uni-
versity in Boston during the 2015 growing season. A total of
66 individual plants were included, varying between one and
four individuals per taxa (an average of 2.6) based on availabil-
ity within the living collections; most taxa were represented by
three or four individuals, with three taxa represented by a sin-
gle individual. Of note, there is taxonomic disagreement within
Cornus, relating primarily to whether the genus should be sub-
divided into multiple genera (Eyde 1987) and secondarily to
whether several taxa should be considered true species or more
properly subtaxa within other species (Xiang et al. 2006; The
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Plant List 2013). For the purposes of this study, these issues are
unlikely to influence the questions and analyses being consid-
ered, and for clarity we use the taxonomy recognized by the
Arnold Arboretum living collections (along with an established
system of plant identity codes), which agrees well with the tax-
onomy used by most molecular phylogenies of the genus (Xiang
et al. 2006, 2008; Xiang and Thomas 2008). In particular, we
include in this study a named subspecies (Cornus kousa var.
chinensis) aswell as three named species of disputed species rank
(Cornus australis, elsewhere considered Cornus sanguinea ssp.
australis; Cornus coreana, elsewhere considered part of Cornus
walteri; and Cornus pumila, elsewhere considered part of Cor-
nus alba).

In mid-May, all focal plants were flagged on two branches,
with one large branch on each tree or shrub reserved for repeated
sampling and another large branch reserved for the assessment
of relative rates of herbivory. All plants were sampled at six time
points spaced 4 wk apart throughout the growing season, from
late May (several weeks after initial leaf out) to just before the
first frost inmid-October. At each timepoint, five fully expanded
leaveswere collected from the assigned branchon each plant and
relative herbivory rate was assessed on the other branch (as the
percent of leaves with damage present, along with an estimate
of the average percent of leaf area removed on those damaged
leaves). The Cornus species under study were observed to put
out a single main flush of leaves at the beginning of the growing
season and to produce few to no additional leaves during the
growing season, so the collected leaves should primarily reflect
changes within existing leaves across the growing season rather
than changes due to differences in traits among cohorts of leaves
over time (as might be the case in many other taxa). Only un-
damaged or lightly damaged leaves (when no undamaged leaves
were available) were collected, and leaves were placed in zip-
sealed plastic bags kept in an ice-cooled chest until being re-
turned to the laboratory on the same day and kept in a refriger-
ator overnight, with next-day assessment of fresh traits. Only two
individual plants became unsampleable halfway through the
growing season due todefoliation (likely bybrowsingmammals).
Growing degree days with a base of 107C were calculated for
each sampling date using temperature data from the Weld Hill
Weather Station within the grounds of the Arnold Arboretum
(http://labs.arboretum.harvard.edu/weather).

Leaf Trait Assessment

A large number of leaf traits were assessed on collected leaves
at each time point and can be found in the supplement (data
set S1; data sets S1–S7 are available online). First, fresh mass
of the five sampled leaves was taken with an analytical balance,
followed by imaging using a digital flatbed scanner at a resolu-
tion of 600 dpi. Next, chlorophyll content was assessed using
a handheld meter (atLEAF CHL STD, FT Green), leaf lamina
thickness was measured between veins with digital calipers, and
leaf toughness was assessed as the force required to puncture
the leaf lamina between veins using a digital penetrometer (FG-
3006, Shimpo Instruments). For each of these three traits, one
measurement was taken on each of the five leaves midway down
the length of each leaf, and these measurements were averaged.
Leaves were then dried in a forced-air drying oven at 607C for
3 d until at constant weight andweighed to obtain drymass. Leaf
water content was calculated as the mass of water present (leaf
fresh mass minus dry mass) per gram of leaf dry mass. Leaf im-
ageswere analyzed using ImageJ (Schneider et al. 2012) to obtain
leaf area and leaf aspect ratio. Leafmass per area (LMA)was cal-
culated as the ratio of leaf dry mass to leaf area, and lamina den-
sity was calculated as the ratio of leaf dry mass to the volume of
the leaf, estimated as the product of leaf area and lamina thick-
ness. Chlorophyll meter values were converted to an area basis
(mg/cm2) based onmanufacturer recommendations (and demon-
strated linearity with extractable chlorophyll content; Zhu et al.
2012) and subsequently transformed to amass basis using LMA.

A subset of dried leaves were ground into a fine homogenized
powder, and methanolic extracts were prepared for use with
four assays of secondary metabolite content. The colorimetric
Folin-Ciocalteu assay was used to estimate total phenolics (Sin-
gleton et al. 1999), expressed in caffeic acid (CAS 331-39-5)
equivalents per gram of dry leaf tissue using a standard curve
under the Beer-Lambert law. The colorimetric aluminum com-
plexation assaywas used to estimate total flavonoids (Pękal and
Pyrzynska 2014), expressed in quercetin (CAS 117-39-5) equiv-
alents per gram of dry leaf tissue using a standard curve under
the Beer-Lambert law. Total anthocyanin content was estimated
using a colorimetric pH differential assay based on relative ab-
sorbance at 530 and 700 nm in buffers of 1.0 and 4.5 pH (Lee
et al. 2005), expressed in cyanidin 3-glucoside equivalents using
the molar absorptivity and molecular weight of that common
anthocyanin. All colorimetric analyses used the same visible–
near-infrared spectrometer (Vernier Software), which collected
absorbance between 380 and 950 nm with 3-nm optical resolu-
tion and 55% photometric accuracy. Last, the radial diffusion
assay was used to estimate tannin activity (Hagerman 1987;
Graça and Bärlocher 2005), whereby the visible precipitation
of protein (bovine serum albumin; CAS 9048-46-8) by tannins
present in leaf extract is measured in relation to a standard curve
of varying concentrations of tannic acid standard (CAS 1401-
55-4), allowing expression of tannin protein precipitation activ-
ity in tannic acid equivalents.

Remaining leaf tissue was sent for analysis by the Louisiana
State University Soil Test and Plant Analysis Laboratory (Ba-
ton Rouge) via inductively coupled plasma mass spectroscopy
(SPECTRO ARCOS; SPECTRO Analytical Instruments, Kleve,
Germany) to obtain leaf concentrations for phosphorus, potas-
sium, calcium,magnesium, sulfur, iron, boron,manganese, zinc,
copper, sodium, and aluminum. Samples with sufficient tissue
remaining were analyzed for nitrogen content using Dumas dry
combustion (LECO 628 CHN Analyzer; LECO, St. Joseph, MI)
at the same facility, yielding data for approximately half of
all samples.

Environmental Data

To obtain data on habitat environmental characteristics, oc-
currence data for our focal specieswere compiled from theGlobal
Biodiversity Information Facility (GBIF 2019) and Integrated
Digitized Biocollections (iDigBio 2019) databases of digitized
herbarium records (app. S1, available online). Records only from
preserved specimens (i.e., herbarium records) andwith geographic
coordinates were included, and occurrence points were manually
curated to remove duplicates, points outside of the native range
(e.g., those in botanical gardens), and any other suspicious or
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questionable records, as well as to align records using synonyms
for the genus (e.g., Swida) with species names in Cornus (The
Plant List 2013). Occurrenceswere not obtained forC. australis,
C. coreana, C. pumila, or C. kousa var. chinensis given that
these names are not accepted at species rank by The Plant List
and the databases would not be expected to uniformly recognize
these taxa; instead, many occurrences would likely be subsumed
within other species.

We used the curated set of occurrence points to extract envi-
ronmental variables from multiple sources, all presented in the
supplement (data set S2).We used theWorldClim global climate
model (Hijmans et al. 2005) to extract bioclimatic temperature
and precipitation variables at a 30-arcsec resolution (∼1 km2).
We additionally extracted monthly minimum temperature data
to calculate the number of frost-free months. Site annual aver-
age potential evapotranspiration and aridity index (the ratio of
mean annual precipitation to potential evapotranspiration)were
extracted from the CGIAR Global Aridity and Potential Evapo-
transpiration database (Zomer et al. 2008). Soil variables were
extracted from the SoilGrids1km global interpolated soil model
(Hengl et al. 2014), yielding soil texture and chemistry charac-
teristics. Soil variables were obtained at six available depths
between 0 and 200 cm and averaged across depths to provide
an average description of the rooting zone. Last, we extracted
smoothed weekly normalized difference vegetation index (NDVI)
data at ∼16-km2 resolution from the National Oceanographic
and Atmospheric Administration Center for Satellite Applica-
tions andResearch’s Global VegetationHealth Products (NOAA
STAR2016). These data were used to generate twometrics: first,
the degree of vegetation seasonalitywas defined as the amplitude
of NDVI across the year. A larger amplitude would occur in
habitats that vary more strongly in greenness between summer
andwinter or a wet and dry season, indicating higher vegetation
seasonality in response to environmental conditions. Second, the
length of the growing seasonwas defined as the number ofweeks
where NDVI was at least one-quarter of the annual amplitude
above the minimum. This threshold is arbitrary but for these
species yields a good relative measure of the length of time for
which vegetation greenness is elevated above that of the dormant
season. This generates a useful alternative metric to the frost-
free period for defining the length of the growing season. These
types of interpretations of seasonal NDVI patterns are com-
mon in remote-sensing studies and have been validated against
ground-level data onmultiple continents (Malingreau1986;Reed
et al. 1994).

Data Analysis

A traditional approach to analyzing sequentially sampled
phenotypes is repeated-measures analysis (von Ende 2001). To
examine general seasonal trends across the observed plants, a
simple repeated-measures analysis of variance was performed
on each leaf trait using a mixed model approach with month
as a fixed effect, plant identity as a random effect, and an AR
(1) covariance structure in JMP Pro version 13 (SAS Institute,
Cary, NC), along with Tukey post hoc tests when appropriate.

A phylogeny of the genus Cornus was reconstructed from
matK and ITS sequences originally published by Xiang et al.
(2006). Sequences were concatenated, and a maximum likeli-
hood phylogeny was reconstructed using a GTRCAT model in
RAxML version 8.2.10 (Stamatakis 2014) with the blue- and
white-fruited clade set as the outgroup clade to provide well-
established polarity for the genus (Xiang et al. 2006, 2008;Xiang
and Thomas 2008). Based on taxonomic information, C. aus-
tralis was manually added to the tree as sister to C. sanguinea
and C. coreana was manually added as sister to C. walteri (The
Plant List 2013).
Phylogenetic comparative analyses were performed (1) indi-

vidually by month and (2) as seasonal curves. For analyses on
individual months, trait data were treated as though the month
of interest was the only time point sampled, yielding six parallel
analyses. A phylogenetic generalized least squares model was
fitted to estimate the correlation between all pairs of trait-trait
and trait-environment correlations using restricted maximum
likelihood in the Rphylopars package (Goolsby et al. 2017) in
R version 3.5.1 (R Core Team 2018). Cornus australis, C. co-
reana,C. kousa var. chinensis, andC. pumilawere omitted from
analyseswith environmental variables due to lack of data. To ac-
complish this, taxa were pruned from the phylogeny and trait
data were removed from the data set. Because traits and envi-
ronmental variables all exhibited varying levels of phylogenetic
signal, Pagel’s lwas simultaneously estimated for each pairwise
correlation to minimize the occurrence of false positives (Pagel
1999; Revell 2010). When needed, maximum likelihood an-
cestral state reconstruction for traits and environmental vari-
ables was performed using the Rphylopars package (Goolsby
et al. 2017).
For curve-based analyses, third-order polynomial regressions

were fitted to the seasonal variation in each trait for each species,
with growing degree days as the independent variable. Step-
wise Akaike information criterion model selection was used to
avoid overfitting (MASS package; Venables and Ripley 2002),
allowing up to two terms to have coefficients of zero, asmost ap-
propriate for the data. Three metrics were derived from species’
seasonal trait curves: (1) the baseline trait value at the start of the
growing season in May, (2) seasonal breadth (the difference be-
tween the minimum and maximum values for each trait curve),
and (3) net seasonal shiftiness, defined as the total integrated area
under the curve when traits shift above the baseline trait value
minus the total integrated area above the curve when traits shift
below the baseline trait value (fig. 1). Seasonal breadth therefore
gives the absolute range of trait plasticity over the growing sea-
son, while net seasonal shiftiness gives a directional magnitude
of trait plasticity over the growing season. A positive net seasonal
shiftiness value indicates that the trait shifts net higher than base-
line over the growing season,while a negative value indicates that
the trait shifts net lower than baseline over the growing season.
A positive correlation between a univariate variable and net sea-
sonal shiftiness would therefore indicate that as the univariate
variable increases, the curve is observed to evolve to become
more positive—either a stronger upward shift or less of a down-
ward shift over the growing season. A negative correlation be-
tween a univariate variable and net seasonal shiftiness would in-
dicate the opposite, where as the univariate variable increases,
the curve is observed to evolve to becomemore negative—either
less of an upward shift or a stronger downward shift over the
growing season. Similarly, a positive correlation between net sea-
sonal shiftinessmetrics for two traitswould indicate that seasonal
curves aremoving in the same direction (when one evolves to be-
come more positive, the other does as well), whereas a negative



92 INTERNATIONAL JOURNAL OF PLANT SCIENCES
correlation between net seasonal shiftiness metrics for two traits
would indicate that seasonal curves are moving in opposite di-
rections (when one evolves to become more positive, the other
becomes more negative).

Baseline trait value, seasonal breadth, and net seasonal shift-
inessmetrics were treated as univariate variables for each species
trait curve, and phylogenetic comparative analyses were per-
formed on all pairs of traits and between all trait-environment
pairwise combinations using the same methods applied to anal-
yses on individual months (see above). It is important to note
that, although subtle, the individual by-month results for May
are distinct from the curve-predicted trait values for May, as
smooth curve-based predictions should be less sensitive to outliers
(Kingsolver et al. 2001). For two species (Cornus drummondii
and C. walteri), anthocyanin content was undetectable across all
sampling dates and thus invariant, and so these two species were
omitted from all curve-based analyses involving anthocyanins.

Results and Discussion

Repeated-Measures Analysis of Seasonal Trait Changes

Assessing seasonal trends in leaf traits across all sampledplants
using repeated-measures analysis of variance, 23 out of 26 mea-
sured leaf traits show significant changes across the growing
season (fig. S1, available online). For most traits, these seasonal
changes do not appear to be merely random walks driven by
simple sampling variation around a static mean trait value but,
rather, large directional shifts over time in leaf physiology. On
average, leaves appear to continue to put on dry mass as well
as area betweenMay and June and during this period experience
an increase in LMA. Across the growing season, leaves on aver-
age experience a decrease in water content, chlorophyll content,
and concentration of key nutrients, such as nitrogen, phosphorus,
potassium, iron, zinc, and copper, suggesting a general reduction
in leaf productivity over time. Interestingly, concentrations of
calcium and boron show steady increases over the growing sea-
son. Secondary metabolites differ in their behavior, with no sig-
nificant changes in anthocyanins across the growing season but
general declines in total flavonoids. Total phenolics and tannin
activity both decrease on average between May and June, after
which these chemical defenses experience general increases in in-
vestment, with the highest levels observed at the end of the grow-
ing season. During the last sampling interval between September
andOctober, leaves clearly begin to experience the effects of nu-
trient resorption and the mobilization of other resources out of
deciduous leaves, with sharp reductions in leaf mass, leaf area,
chlorophyll, and nitrogen accompanied by decreases in lamina
thickness and an increase in lamina density. During this period
Fig. 1 Conceptual diagrams of the function-valued approach used in this study. a, Visual explanation of the three metrics of seasonal shifts
calculated from the predicted curves fitted to the data: (1) the baseline trait value at the start of the growing season in May, represented by the
y-intercept on each graph; (2) seasonal breadth (the difference between the minimum andmaximum values for each trait curve); and (3) net seasonal
shiftiness, defined as the total integrated area under the curve when traits shift above the baseline trait value minus the total integrated area above the
curve when traits shift below the baseline trait value. Seasonal breadth therefore gives the absolute range of trait plasticity over the growing season,
while net seasonal shiftiness gives a directional magnitude of trait plasticity over the growing season. A positive net seasonal shiftiness value indicates
that the trait shifts net higher than baseline over the growing season, while a negative value indicates that the trait shifts net lower than baseline over
the growing season. b, Conceptual explanation of the ancestral state reconstruction of function-valued traits (i.e., curves) for the assessment of the
evolution of dynamic traits across phylogenies. This general approach, regardless of the specific metrics used, can provide valuable insights into the
evolution of plastic traits in relation to fixed traits, environmental variables, and other dynamic traits during species diversification.
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there is also a large spike in leaf sodium, suggesting that this
element is either beingmobilized into leaves in advance of senes-
cence or being disproportionately left behind while other leaf
components are being removed from leaf tissues. This kind of
repeated-measures analysis can be quite useful to gain a sense
of general patterns of change over time but has the limitations
of being univariate and blind to the phylogenetic nonindepen-
dence of species.

Considering a subset of these traits for several representative
species in two-dimensional trait space, it is clear that many of
these trait changes across the growing season are co-occurring
shifts in leaf traits, often highly correlated (fig. 2). Despite the
fact that species may start and end in different parts of trait
space over the growing season, they typically experience similar
directional trajectories over time. For example, as species ex-
perience increases in LMA and tannin activity over time, they
experience reductions in water content, chlorophyll, and nitro-
gen, and those experiencing more of a shift in one trait seem to
experiencemore of a shift in the other. This trait-space approach
can yield useful insights, as it allows for the consideration of
the interaction of multiple traits at once and the examination
of differences among species, but of course it has the limitations
of being largely descriptive, without the rigor of formal statisti-
cal tests.

Traditional Trait-Trait and Trait-Environment Analyses

Most studies of plant functional trait evolution employing a
phylogenetic comparative approach collect trait data by sam-
pling at one time point or plant developmental stage or else pool
data collected from many different time points on the assump-
tion that intraspecific variation is small relative to interspecific
variation (often dramatically incorrect; Albert et al. 2010;
Donovan et al. 2014; Shipley et al. 2016). Given that most com-
parative studies are not working with multiple time points, here
we examine the effect of sampling time on the results obtained
by traditional trait-trait and trait-environment phylogenetic
generalized least squares regression, as if our study had chosen
to collect data only at one point during the growing season and
drawn inferences based on that data alone. The results of these
six parallel analyses are contained in the supplement (in full in
data sets S3 and S4 and summarized in tables S1 and S2, avail-
able online), with highlights presented here (tables 1, 2).

While some pairwise trait-trait macroevolutionary correla-
tions hold nomatter the time of sampling (e.g., calciumandmag-
nesium, LMA and water content, chlorophyll and tannin activ-
ity), these are the exception rather than the rule. The majority of
trait-trait correlations exhibit marked changes depending on the
time of sampling, with major increases or decreases in strength
and vacillations between statistical significance and nonsignifi-
cance (table 1). Perhaps most disturbing are the instances where
correlations that would be considered strong and reliable rela-
tionships (e.g.,R2 > 0:50)when assessed inMay completely dis-
appear in some or all of the subsequent months—this is the case
for relationships involving nitrogen, phosphorus, potassium,
chlorophyll, LMA, and toughness. Given the importance placed
on such traits when describing plant ecological resource-use
strategies, this lack of consistency is troubling.

Trait-environment relationships yield a similar pattern, with
wide swings in the strength of relationships (table 2). Looking
across all six parallel analyses, very few trait-environment rela-
tionships hold across the majority of the months considered (ta-
ble S2). Some relationships even change direction over the grow-
ing season—for example, those related to leaf nitrogen and
descriptors of native habitat growing-season length and temper-
ature seasonality and severity (table 2). These changes in direc-
tion actually make ecological sense if one knows that leaf nitro-
gen falls over the growing season in Cornus (which one would
know only with time series sampling), as the evolution of higher
early-season and lower late-season leaf nitrogen during adap-
tation to shorter, more seasonal environments would indicate
the evolution of a resource-use strategy of rapidly producing
resource-acquisitive high-productivity leaves to make the most of
a shorter growing season and then resorbing that nitrogen in-
vestment relatively earlier in expectation of early frosts in such
environments. However, sampling at a single midseason time
point (e.g., June, July, or August) would miss almost all macro-
evolutionary associations between this classic resource-use trait
and native habitat seasonality, despite this being among the
strongest relationships in our data sets. That such a large differ-
ence in conclusions would exist based on a 4-wk difference in
sampling time is unexpected given widespread sampling prac-
tices in the broader functional trait literature.

Value of Function-Valued Analyses

Function-valued analyses considering the entire growing sea-
son provide insights into how seasonal shifts in traits evolve,
and full results for all traits are presented in the supplement
(data sets S5, S6). The analyses performed here use two exam-
ples of simple metrics of plasticity derived from functions—in
our case, a metric of the absolute range of trait plasticity (sea-
sonal breadth) and a directional magnitude of trait plasticity (net
seasonal shiftiness). For our purposes, the main goal is to un-
derstand how seasonal shifts in traits evolve with one another
and with native habitat environmental characteristics, and these
two metrics differ in their interpretation.
Seasonal breadth is agnostic to direction, such that a positive

correlation between two traits indicates that as one trait evolves
a larger seasonal shift, the other trait does as well, while a nega-
tive correlation indicates that as one trait evolves a larger sea-
sonal shift, the other trait evolves a smaller shift. Examples of
traits with strong correlations in seasonal breadth include total
phenolics and zinc (positive; R2 p 0:55), nitrogen and lamina
thickness (negative; R2 p 0:46), potassium and copper (posi-
tive; R2 p 0:41), and lamina thickness and LMA (positive;
R2 p 0:38). Some of these, such as the relationship between
lamina thickness and LMA or nitrogen, have an obvious mech-
anistic connection (Poorter et al. 2009; John et al. 2013, 2017;
Onoda et al. 2017), while it is less clear why the evolution of
seasonal plasticity would be correlated in other pairs of traits.
Considering the evolution of seasonal breadth with native hab-
itat environmental characteristics, examples of strong evolution-
ary correlations include water content and precipitation sea-
sonality (positive; R2 p 0:43), nitrogen and soil silt content
(positive; R2 p 0:32), and total phenolics and NDVI-derived
growing-season length (negative;R2 p 0:37). Possible interpre-
tations of such correlations include that higher plasticity in wa-
ter content evolves under more variable precipitation (perhaps
reflecting a more substantial hardening of leaves; Nicotra and
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Davidson 2010), higher plasticity in nitrogen evolves on silt soils
relative to sandy ones (perhaps suggesting a more resource-
acquisitive early-season strategy and stronger end-of-season re-
sorption; Reed et al. 2012; Yuan et al. 2015), and less variable
chemical defense in environments with longer growing seasons
(perhaps reflectingmore consistent defense investment under ex-
tended exposure to herbivore pressure; Hahn et al. 2019).While
a metric such as seasonal breadth might be useful in some
Fig. 2 Seasonal shifts in two-dimensional trait space for five Cornus species. Average trait values at the six sampled time points are shown for
each species, with increasing size of markers and connections between markers by month (smallest size in May, largest in October). Note that trait
data are missing for nitrogen for Cornus sericea and Cornus officinalis in May and so these points are omitted. LMA p leaf mass per area.
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contexts, this kind of approach does not consider the baseline
trait value or the directionality of the change in the two traits.
Note that the interpretations made above rely on having a gen-
eral sense of the directionality of trait change, here inferred using
other approaches (e.g., fig. S1).

Net seasonal shiftiness is an example of a metric that incor-
porates both the baseline trait value (here the earliest sampling
point) and the directionality of trait change alongside its magni-
tude. Under thismetric, a positive correlation between two traits
indicates that as one evolves a net upward (or downward) shift
relative to baseline, the other trait moves in the same direction.
Conversely, a negative correlation indicates that as one trait
evolves a net upward shift, the other trait evolves a net down-
ward shift (and vice versa). Examples of traits with strong cor-
relations in net seasonal shiftiness include lamina density and
tannin activity (positive; R2 p 0:48), calcium and magnesium
(positive; R2 p 0:46), nitrogen and manganese (negative; R2 p
0:53), and water content and LMA (negative; R2 p 0:50). A
finding that around half of variation in the evolution of a sea-
sonal shift in one trait can be explained by the evolution of a sea-
sonal shift in another trait indicates a strong underlying mecha-
nistic interaction between these traits. Considering the evolution
of net seasonal shiftiness with native habitat environmental char-
acteristics, many of the associations found using seasonal breadth
are recovered, such as water content and precipitation seasonal-
ity (negative; R2 p 0:36) or nitrogen and soil silt content (neg-
ative; R2 p 0:31), now with the sign of the relationship clear
where before it could be inferred only from other approaches.
Some relationships are no longer significant when accounting
for the directionality of change from baseline, such as the rela-
tionship between total phenolics and NDVI-derived length of the
growing season. Other strong evolutionary correlations that were
previously missed emerge—for instance, relationships between
certain micronutrients such as zinc and soil pH (negative, R2 p
0:44) and between leaf area and precipitation seasonality (posi-
tive,R2 p 0:36), as well as similar variables indicative of the in-
tensity of dry periods (data set S6). These indicate the evolution
of larger seasonal declines in leaf zinc (aswell as copper and iron;
data set S6) on more alkaline soils, where availability is poorer
and perhaps resorption is higher (Lucas and Davis 1961; Hayes
et al. 2014), as well as the evolution of larger early-season in-
creases in leaf area in habitats with less consistent rainfall, per-
haps indicating more prolonged leaf expansion in such species
(as found in beech; Meier and Leuschner 2008).
Additional insights can be gained by explicitly considering the

relationships betweenmetrics of trait plasticity and baseline trait
values at the start of the growing season. Here macroevolution-
ary correlations between May trait values and seasonal breadth
or net seasonal shiftiness yield very strong relationships formany
traits (table 3). Results for seasonal breadth are positive formost
Table 1

Demonstration of Variation across the Growing Season in the Strength of Pairwise Trait-Trait Macroevolutionary Correlations
among Cornus Species, Attributable to Seasonal Shifts in Leaf Traits
Trait-trait relationship
 Sign
 May
 June
 July
 August
 September
 October
Calcium 1 magnesium
 (1)
 .67
 .62
 .58
 .53
 .51
 .48

Nitrogen 1 total chlorophyll
 (1)
 .63
 .57
 . . .
 .44
 .17
 .45

Tannin activity 1 total phenolics
 (1)
 .41
 .31
 .28
 .53
 .53
 .49

Potassium 1 water content
 (1)
 .28
 .43
 .29
 .37
 .56
 .44

LMA 1 tannin activity
 (1)
 .35
 .33
 .51
 .32
 .23
 . . .

Nitrogen 1 potassium
 (1)
 .53
 .45
 . . .
 . . .
 .23
 .18

Nitrogen 1 phosphorus
 (1)
 .66
 . . .
 . . .
 . . .
 . . .
 . . .

Total chlorophyll 1 water content
 (1)
 .34
 .47
 . . .
 .37
 .17
 . . .

Nitrogen 1 total anthocyanins
 (1)
 .32
 .19
 . . .
 . . .
 .19
 . . .

LMA 1 total phenolics
 (1)
 . . .
 .20
 .24
 . . .
 .17
 .18

LMA 1 water content
 (2)
 .29
 .54
 .63
 .67
 .50
 .30

LMA 1 total chlorophyll
 (2)
 .57
 .88
 . . .
 .55
 .24
 . . .

LMA 1 nitrogen
 (2)
 .53
 .56
 .28
 .22
 . . .
 . . .

LMA 1 potassium
 (2)
 .32
 .55
 .27
 .25
 .29
 .21

Total chlorophyll 1 tannin activity
 (2)
 .65
 .36
 .20
 .34
 .24
 .28

Nitrogen 1 toughness
 (2)
 .68
 . . .
 .30
 . . .
 . . .
 . . .

Magnesium 1 total flavonoids
 (2)
 .33
 .40
 .40
 .29
 .19
 .25

Nitrogen 1 tannin activity
 (2)
 .26
 .41
 .27
 .21
 .18
 . . .

Tannin activity 1 water content
 (2)
 .17
 .35
 .37
 .19
 .20
 . . .

Total phenolics 1 water content
 (2)
 .17
 . . .
 .18
 .20
 .17
 .26

Total chlorophyll 1 total phenolics
 (2)
 .41
 .14
 .17
 . . .
 . . .
 . . .

Calcium 1 total flavonoids
 (2)
 .36
 .24
 .23
 . . .
 . . .
 . . .

Calcium 1 total phenolics
 (2)
 . . .
 . . .
 .22
 .16
 . . .
 .31
Note. Each sampling month (May–October) was treated as a separate data set of leaf trait data on 25 species. Macroevolutionary correlations
among traits were assessed using phylogenetic generalized least squares regression in the Rphylopars package. Coefficients of determination (R2) are
presented when statistically significant (P < 0:05). Note that while some trait relationships are largely invariant across sampling months, others vary
dramatically. This suggests that studies making different decisions about the timing of sampling may arrive at different conclusions. A summary of
variation in relationships across months is presented in the supplement (fig. S1, available online), along with full statistical results (data set S3, avail-
able online). LMA p leaf mass per area.



96 INTERNATIONAL JOURNAL OF PLANT SCIENCES
traits, indicating that the evolution of higher May trait values is
correlated with the evolution of higher seasonal trait plasticity.
Results for net seasonal shiftiness are negative for most traits,
indicating that for traits that typically shift downward over
the growing season, the evolution of higher May trait values is
correlated with the evolution of stronger declines over the grow-
ing season in those traits, while for traits that typically shift up-
ward over the growing season, the evolution of lower May trait
values is correlated with the evolution of stronger seasonal in-
creases. In particular, the strong negative relationships for nitro-
gen (R2 p 0:76), total phenolics (R2 p 0:72), toughness (R2 p
0:50), and tannin activity (R2 p 0:49) indicate that there is a
strong evolutionary coupling between the early-season resource-
use or defense strategy employed by a species and the degree
of plasticity it exhibits across the growing season (table 3).
These relationships indicate that the evolution of differing de-
grees of seasonal trait plasticity is related to the evolution of spe-
cies’ early-season phenotypes for many classic plant functional
traits.
Overall Insights into the Evolution of Leaf Trait
Seasonality in Dogwoods

While each of the analyses described above gives useful pieces
of information from different perspectives, considering the results
Table 2

Demonstration of Variation across the Growing Season in the Strength of Pairwise Trait-Environment Macroevolutionary
Correlations among Cornus Species, Attributable to Seasonal Shifts in Leaf Traits
Trait-environment relationship
 Sign
 May
 June
 July
 August
 September
 October
Phosphorus 1 soil pH
 (1)
 .58
 .21
 .35
 .37
 .31
 .21

Toughness 1 precipitation of wettest quarter
 (1)
 .21
 .50
 .41
 .37
 .32
 .30

Copper 1 soil bulk density
 (1)
 .44
 .43
 .30
 .25
 .23
 . . .

LMA 1 precipitation of warmest quarter
 (1)
 .23
 .26
 .27
 .28
 . . .
 .23

Zinc 1 amplitude of seasonality (NDVI)
 (1)
 .29
 . . .
 .29
 .31
 .25
 .33

Zinc 1 soil bulk density
 (1)
 . . .
 .31
 .25
 .24
 .30
 .49

Nitrogen 1 amplitude of seasonality (NDVI)
 (1)
 .36
 .23
 .27
 .19
 . . .
 . . .

Phosphorus 1 diurnal temperature range
 (1)
 . . .
 .47
 .29
 .26
 . . .
 .25

Phosphorus 1 soil cation exchange capacity
 (1)
 .21
 . . .
 . . .
 .23
 .23
 .23

Toughness 1 mean annual temperature
 (1)
 . . .
 .44
 .31
 .26
 .23
 . . .

Toughness 1 mean annual precipitation
 (1)
 . . .
 .38
 .40
 .23
 . . .
 . . .

Total flavonoids 1 precipitation of coldest quarter
 (1)
 .24
 . . .
 . . .
 . . .
 . . .
 . . .

Nitrogen 1 temperature seasonality
 Mixed
 .53 (1)
 . . .
 . . .
 . . .
 . . .
 .45 (2)

Nitrogen 1 growing-season length (NDVI)
 Mixed
 .52 (2)
 . . .
 . . .
 . . .
 . . .
 .39 (1)

Nitrogen 1 minimum temperature of coldest month
 Mixed
 .61 (2)
 . . .
 . . .
 . . .
 . . .
 .23 (1)

Nitrogen 1 mean temperature of driest quarter
 Mixed
 .73 (2)
 . . .
 . . .
 . . .
 . . .
 .20 (1)

Zinc 1 precipitation of wettest month
 (2)
 .35
 .29
 .46
 .53
 .51
 .48

Zinc 1 precipitation of warmest quarter
 (2)
 .42
 .28
 .33
 .54
 .64
 .34

Toughness 1 amplitude of seasonality (NDVI)
 (2)
 .26
 .49
 .51
 .37
 .32
 .22

Zinc 1 soil coarse fragment volume
 (2)
 . . .
 .33
 .41
 .30
 .38
 .51

Zinc 1 precipitation seasonality
 (2)
 . . .
 .30
 .41
 .24
 .40
 .55

LMA 1 precipitation of coldest quarter
 (2)
 .38
 .34
 .28
 . . .
 .38
 .20

Manganese 1 precipitation of warmest quarter
 (2)
 .29
 .21
 .21
 .20
 .22
 . . .

Phosphorus 1 frost-free period
 (2)
 .20
 . . .
 .26
 .26
 .28
 .22

Phosphorus 1 mean annual precipitation
 (2)
 .35
 .22
 .37
 .33
 .23
 . . .

Phosphorus 1 growing-season length (NDVI)
 (2)
 .39
 . . .
 .37
 .34
 .34
 . . .

Nitrogen 1 precipitation of wettest month
 (2)
 .27
 .20
 .26
 .22
 . . .
 . . .

Water content 1 mean temperature of warmest quarter
 (2)
 . . .
 . . .
 .21
 .27
 . . .
 .51

Water content 1 mean temperature of wettest quarter
 (2)
 . . .
 .32
 .43
 .35
 . . .
 . . .

Phosphorus 1 soil organic matter content
 (2)
 .29
 .23
 .22
 . . .
 . . .
 . . .

Total anthocyanins 1 maximum temperature of warmest month
 (2)
 . . .
 . . .
 .28
 . . .
 .23
 .36

Nitrogen 1 frost-free period
 (2)
 .61
 . . .
 . . .
 . . .
 . . .
 . . .

Nitrogen 1 mean annual temperature
 (2)
 .54
 . . .
 . . .
 . . .
 . . .
 . . .

Nitrogen 1 soil sand content
 (2)
 .56
 . . .
 . . .
 . . .
 . . .
 . . .

Nitrogen 1 soil organic matter content
 (2)
 .42
 . . .
 . . .
 . . .
 . . .
 . . .
Note. Each sampling month (May–October) was treated as a separate data set of leaf trait data on 25 species. Macroevolutionary correlations
among traits were assessed using phylogenetic generalized least squares regression in the Rphylopars package. Coefficients of determination (R2) are
presented when statistically significant (P < 0:05). Note that while some trait-environment relationships are largely invariant across sampling
months, most vary dramatically, with some even changing sign. This suggests that studies making different decisions about the timing of sam-
pling may arrive at different conclusions. A summary of variation in relationships across months is presented in the supplement (table S2, avail-
able online), alongside full statistical results (data set S4, available online). LMAp leaf mass per area; NDVIp normalized difference vegetation
index.
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together yields a more complete picture of functional trait evo-
lution. Consider two contrasting scenarios of trait-trait and
trait-environment interactions: first, the relationship between
LMA and water content, and second, the relationships among
nitrogen, toughness, and tannin activity, both in relation to an
important native habitat environmental variable—precipitation
of the wettest month (fig. 3). In the first scenario, net seasonal
shiftiness for LMAandwater content are strongly evolutionarily
correlated (negative; R2 p 0:50; data set S5), but May values
are only weakly correlated with net seasonal shiftiness for these
traits (table 3). Trait values for both traits considered individu-
ally by month show no evolutionary correlation with precipita-
tion regardless of month used (table S2), but net seasonal shifti-
ness is evolutionarily correlatedwith precipitation for bothwater
content (negative; R2 p 0:42) and LMA (positive; R2 p 0:26;
data set S6). In the second scenario, net seasonal shiftiness for leaf
nitrogen, toughness, and tannin activity shows nonsignificant or
only very weak pairwise evolutionary correlations (data set S5),
butMay values strongly predict net seasonal shiftiness for nitro-
gen (negative; R2 p 0:76), toughness (negative; R2 p 0:50),
and tannin activity (negative; R2 p 0:49). Trait values consid-
ered individually by month show significant evolutionary
correlations with precipitation for toughness (all 6 mo) and ni-
trogen (two-thirds of months), though not tannin activity (table
S2), but net seasonal shiftiness is not correlated with precipita-
tion for any of these three traits (data set S6).
One interpretation of the differences between these two

scenarios is that traits such as LMAandwater content are tightly
mechanistically linked at the scale of the leaf organ itself (John
et al. 2013; Onoda et al. 2017), such that they shift in strong
lockstep across the growing season within individuals, and be-
cause of this the degree of seasonal shift that these traits experi-
ence evolves together as species diversify. Conversely, for traits
such as nitrogen, toughness, and tannins, the lack of correlated
shifts across the growing season indicates that these traits are
not strongly mechanistically linked at the leaf level but that cor-
relations between these traits among species (e.g., nitrogen and
tannins) might be considered more consistent with selection fa-
voring certain combinations of trait values due to energy bud-
gets and broader effects on fitness (Reich et al. 2014; Zust and
Agrawal 2017) rather than direct trait-trait interactions gen-
erating constraints at the leaf level. Looking at the relationship
between net seasonal shiftiness and May baseline values under-
scores this—for LMA and water content, there is only a weak
relationship between baseline May values and the direction and
magnitude of shifts observed, while for nitrogen, toughness, and
tannins, the strong relationships between the baselineMay value
and the degree of seasonal shift show that the initial investment
by the plant (in productivity, physical defense, or chemical de-
fense) is strongly predictive of the degree to which that strategy
changes over the growing season. When leaf nitrogen starts out
at a higher concentration, it falls further over the growing sea-
son, reflecting a stronger shift from resource-acquisitive toward
resource-conservative strategy in species that begin the growing
season in a more resource-acquisitive part of trait space. When
investment in tannins starts out at a low concentration, in-
vestment tends to increase fairly consistently over the growing
season (adding chemical defense capacity over time to poorly
defended leaves), whereas when tannins start out at a high con-
centration, they tend to fluctuate—often falling and then in-
creasing again. Given that nitrogen and tannin activity consid-
ered by month correlate negatively across species in five out of
6 mo but their seasonal shifts are evolutionarily uncorrelated,
these changes fit with expectations about trait trade-offs as part
of larger plant resource-use and defense strategies (Reich 2014;
Zust and Agrawal 2017), rather than fitting clear tissue- or
organ-level hypotheses about structural or physiological interac-
tions among traits (John et al. 2013; Onoda et al. 2017). When
thinking about these two scenarios with respect to the environ-
mental gradient of precipitation among species, for LMA and
water content there is a strong relationship between net seasonal
Table 3

Macroevolutionary Correlations between Function-Valued Metrics
of Trait Seasonal Shifts (Seasonal Breadth, Net Seasonal Shiftiness)

and Baseline Trait Values (May) among Cornus Species
Trait

Seasonal
breadth
Net seasonal
shiftiness
Leaf dry mass
 . . .
 . . .

Water content
 .34 (1)
 .18 (2)

Leaf area
 . . .
 .26 (2)

Aspect ratio
 .19 (1)
 . . .

LMA
 .21 (1)
 .17 (1)

Lamina thickness
 . . .
 . . .

Lamina density
 .41 (2)
 .62 (2)

Toughness
 .21 (1)
 .50 (2)

Total chlorophyll
 .20 (1)
 .24 (2)

Total anthocyanins
 .62 (1)
 .45 (2)

Total flavonoids
 .45 (1)
 .39 (2)

Total phenolics
 .42 (1)
 .72 (2)

Tannin activity
 . . .
 .49 (2)

Nitrogen
 .77 (1)
 .76 (2)

Phosphorus
 .17 (1)
 .22 (2)

Potassium
 .17 (1)
 . . .

Calcium
 . . .
 . . .

Magnesium
 . . .
 . . .

Sulfur
 .68 (1)
 .24 (1)

Iron
 .74 (1)
 .70 (2)

Boron
 . . .
 . . .

Manganese
 .69 (1)
 .36 (1)

Zinc
 .31 (1)
 .30 (2)

Copper
 .40 (1)
 .26 (2)

Sodium
 . . .
 .68 (2)

Aluminum
 .28 (1)
 . . .
Note. Correlations among traits were assessed using phylogenetic
generalized least squares regression in the Rphylopars package. Coef-
ficients of determination (R2) are presented, followed by the sign when
statistically significant (P < 0:05). Note that for many traits, the degree
of seasonal shift (whether considered in terms of absolute plasticity or
directional magnitude) is strongly evolutionarily correlated with the
baseline trait value. Results for seasonal breadth are positive for most
traits, indicating that species with higher baseline trait values at the start
of the growing season also experience more seasonal plasticity. Results
for net seasonal shiftiness are negative for most traits, indicating one of
two situations—for traits that largely shift downward, species that have
evolved higher baseline values tend to experience stronger downward
shifts over the growing season; for traits that largely shift upward,
species that have evolved lower baseline values tend to experience stron-
ger upward shifts over the growing season. LMA p leaf mass per
area.



98 INTERNATIONAL JOURNAL OF PLANT SCIENCES
shiftiness and precipitation, while this does not exist for nitro-
gen, toughness, or tannin activity. This suggests that the capac-
ity for seasonal plasticity in LMA and water content evolves
in response to native habitat precipitation. Conversely, the ac-
tual trait values in any given month for LMA and water content
are uncorrelated with precipitation, while the trait values for
nitrogen (in four out of 6 mo) and especially toughness (in all
months) are strongly correlated with precipitation. This suggests
that while the capacity for seasonal plasticity in nitrogen or
toughness may not evolve with this environmental variable, the
relative resource strategies to which the absolute values of these
traits contribute do evolve with native habitat precipitation.

Insights from the Evolution of Functional Trait Plasticity

In the Cornus system, a few core themes arise from examin-
ing the evolution of leaf trait plasticity alongside more standard
comparative approaches. First, the large seasonal shifts observed
in most functional traits alongside the variable trait-trait and
trait-environment results that are observed when considering
sampling dates separately highlight the risks of blindly sampling
traits that exhibit strong plasticity. Second, trait shifts across the
growing season typically move individuals from more resource-
acquisitive to more resource-conservative trait combinations,
and the degree of this shift appears often correlated with native
habitat environment. Our findings of large seasonal shifts in leaf
traits are certainly not unprecedented—many of these patterns
have previously been identified in other temperate trees and
shrubs (Riipi et al. 2002; Karolewski et al. 2013; Fajardo and
Siefert 2016), including seasonal fluctuations in leaf dry mass,
area, water content, LMA, toughness, nutrients, and second-
ary metabolites. The finding that phylogenetic correlations can
change when plastic traits are assessed under different condi-
tions or time points is also not a new observation (Goolsby
2015; Kariñho-Betancourt et al. 2015), though it is underappre-
ciated and has substantial consequences for our ability to under-
stand whether there are general principles that govern the evolu-
tion of plant functional traits. This is especially true because
seasonal, ontogenetic, and environmental plasticity have often
been ignored in favor of describing and synthesizing interspecific
variation at large spatial and taxonomic scales (Wright et al.
2004; Reich et al. 2014; Díaz et al. 2016; Shipley et al. 2016;
Pierce et al. 2017). While certainly a valuable endeavor for de-
scribing plant functional diversity and the boundaries of plant
phenotypes, intraspecific trait data often challenge the applica-
bility of the conclusions of broad interspecific syntheses with
respect to “how plants work” (Niinemets 2015; Martin et al.
2017; Anderegg et al. 2018). Intraspecific trait variation is often
treated as noise variation relative to species means (Kazakou et al.
2014; Siefert et al. 2015), despite the fact that much of this intra-
specific variation is actually due to integrated plant changes over
Fig. 3 Evolution of trait seasonality for leaf water content (WC),
leaf mass per area (LMA), leaf nitrogen, leaf toughness, and tannin ac-
tivity across 25 species of Cornus. The phylogeny reflects the ancestral
state reconstruction of native habitat precipitation of thewettestmonth.
Plots of curves all have the same X-axis (growing degree days across
the growing season spanning May–October sampling dates) and have
Y-axis values that are the same for each trait, scaled to the minimum
and maximum trait values observed for that trait across species and
months. Each trait curve can therefore be read based on its behavior
across the growing season based on the relative trait space occupied
by the Cornus species included in this study (i.e., showing large shifts
or small ones, starting “high” or “low,” etc.). This figure showcases
two differing scenarios of trait-trait and trait-environment relationships,
described in “Results and Discussion.” Note that as nitrogen is the one
variable in our data set with substantial missing data (∼50%), we have
used it to demonstrate curve fitting with partial data (shown by the ab-
sence of points for each sampling time in curves) and curve prediction for
species that lack data entirely (represented by curves with dashed lines).
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time and space—that is, seasonal, ontogenetic, or environmen-
tally driven variation, where traits will often change in nonin-
dependent ways. Because this variation is “structured” (Martin
et al. 2017), failing to account for it when collecting data across
species may bias results in unclear ways—muddying the ability
to understand the evolution of plant functional traits even when
plasticity is not the focus.

Information on trait plasticity in key functional traits is not
yet well incorporated into syntheses of the evolution of plant
functional traits and resource-use strategies. At present, we lack
a coherent understanding of how seasonal, ontogenetic, and en-
vironmentally driven variation in functional traits contributes
to plant adaptation, though some excellent advances have been
made in understanding how functional traits vary with these
factors through meta-analysis (Poorter et al. 2009; Barton and
Koricheva 2010; Endara and Coley 2011; Zvereva and Kozlov
2014; Barton et al. 2016; Cooke and Leishmann 2016; Gibert
et al. 2016). To gain further insights into the evolution of plas-
ticity in functional traits, we need sampling of functional traits
across growing seasons, ontogeny, and environmental condi-
tions and the examination of the correlated evolution of trait re-
sponses. Using reaction norms or function-valued approaches
in a phylogenetic comparative framework is one way to accom-
plish this, but regardless of the specific approach used, the ex-
plicit consideration of how traits shift with one another at the
intraindividual scale allows for insights into the nature of trait-
trait relationships.

A particularly important distinction is whether apparent trade-
offs arise from strong tissue- or organ-level structural or physio-
logical interactions (John et al. 2013; Onoda et al. 2017) or
whether they arise from a more general coordination of invest-
ment in traits that form ecological strategies (Reich 2014; Zust
and Agrawal 2017). This is linked to the central distinction be-
tween “selection” and “constraint” (the former referring to se-
lection against trait combinations with low fitness and the latter
variously discussed as biophysical or ultimately genetic) that has
been used to explain why parts of phenotypic space are empty—
for instance, unobserved combinations of traits far off the main
axis of the global leaf economic spectrum (Reich et al. 1999,
2014; Pigliucci et al. 2007; Donovan et al. 2011, 2014). When
considering plasticity, if two leaf traits move in near lockstep
at the intraindividual scale, this suggests that these traits either
have a direct biophysical interaction at the leaf level itself (e.g.,
one structurally drives or physiologically requires the other) or
are governed by shared gene expression (e.g., two secondary
metabolites controlled by the same biosynthetic pathway). If
two leaf traits are macroevolutionarily correlated but do not
move in a coordinated fashion at the intraindividual scale under
plastic responses, this suggests that these traits interact at a scale
above the leaf level, perhaps arising from selection on plant eco-
logical strategies that give rise to trade-offs or other strong trait
relationships among species.

Of course, these are not two discrete categories of trait rela-
tionships but rather represent ends of a continuum of possible
explanations for trait correlations. Especially in the middle of
such a continuum, trait interactions are likely to be influenced
by the relative location of species’ phenotypic combinations in
trait space (Reich et al. 1993; Donovan et al. 2014), where traits
may be able tomovemore independently of one anotherwhen in
the center of the global cloud of observed phenotypic combina-
tions and may track more tightly when near the edges of such
clouds at the margins of presumably structurally or physiologi-
cally incompatible combinations (Reich et al. 1999; John et al.
2013; Reich 2014; Onoda et al. 2017). There will likely also
be effects of growth form, life history, and evolutionary lineage
that limit the degree of plasticity possible and influence the rela-
tive tightness of pairwise trait-trait tracking at the intraindivid-
ual scale due to interactions from additional traits, similarly to
differences in trait trade-offs observed at the macroevolutionary
scale among lineages (Edwards et al. 2014;MasonandDonovan
2015; Muir et al. 2017). While relevant data sets to date are
sparse, these principles provide a rough framework for how
the explicit consideration of trait plasticity can assist with under-
standing the origins and nature of functional trait trade-offs.
The analyses performed here use simple metrics that are

easy to understand to demonstrate the utility of function-valued
approaches. There is a small but growing body ofmore nuanced
function-valued phylogenetic comparative methods that can be
used for particular purposes and data types (e.g., Guo et al.
2007; Hadjipentalis et al. 2013; Goolsby 2015; Clavel et al.
2018), but more important than the specific method employed
is the recognition that a broad diversity of dynamic plant traits
can be analyzed as function valued, allowing for the explicit as-
sessment of the macroevolution of trait plasticity. Such traits in-
clude dose-response curves, reaction norms, allometric or stoi-
chiometric relationships, and many other kinds of traits where
phenotypes change with exogenous factors (e.g., time, resource
availability, biotic pressures, abiotic stressors). We encourage
others to explore (and develop!) approaches to incorporate dy-
namic traits into phylogenetic comparative studies, as addressing
the evolution of plasticity in plant functional traits and its contri-
bution to plant fitness, adaptation, and diversification has been
recognized as one of the “loose foundation stones” of trait-based
plant ecology (Shipley et al. 2016).
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